Spaces:
Running
Running
File size: 86,570 Bytes
b74998d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import gc
import os
import shutil
import sys
import time
from datetime import datetime
from pathlib import Path
from collections import defaultdict
from typing import List, Dict, Tuple
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
import trimesh
from PIL import Image
from pillow_heif import register_heif_opener
from sklearn.cluster import DBSCAN
from mapanything.utils.geometry import depthmap_to_world_frame, points_to_normals
from mapanything.utils.hf_utils.css_and_html import (
get_gradio_theme,
GRADIO_CSS,
)
from mapanything.utils.hf_utils.hf_helpers import initialize_mapanything_model, initialize_mapanything_local
from mapanything.utils.hf_utils.viz import predictions_to_glb
from mapanything.utils.image import load_images, rgb
register_heif_opener()
sys.path.append("mapanything/")
# ============================================================================
# 全局配置
# ============================================================================
# MapAnything Configuration
high_level_config = {
"path": "configs/train.yaml",
"hf_model_name": "facebook/map-anything",
"model_str": "mapanything",
"config_overrides": [
"machine=aws",
"model=mapanything",
"model/task=images_only",
"model.encoder.uses_torch_hub=false",
],
"checkpoint_name": "model.safetensors",
"config_name": "config.json",
"trained_with_amp": True,
"trained_with_amp_dtype": "bf16",
"data_norm_type": "dinov2",
"patch_size": 14,
"resolution": 518,
}
# GroundingDINO 配置 - 从 HuggingFace 加载
GROUNDING_DINO_MODEL_ID = "IDEA-Research/grounding-dino-tiny"
GROUNDING_DINO_BOX_THRESHOLD = 0.25
GROUNDING_DINO_TEXT_THRESHOLD = 0.2
# SAM 配置 - 使用 HuggingFace 的 SAM 模型
SAM_MODEL_ID = "facebook/sam-vit-huge" # 或使用 "facebook/sam-vit-base" 更快更小
DEFAULT_TEXT_PROMPT = "window . table . sofa . tv . book . door"
# 通用物体列表(GroundingDINO 会检测图像中存在的物体)
COMMON_OBJECTS_PROMPT = (
"person . face . hand . "
"chair . sofa . couch . bed . table . desk . cabinet . shelf . drawer . "
"door . window . wall . floor . ceiling . curtain . "
"tv . monitor . screen . computer . laptop . keyboard . mouse . "
"phone . tablet . remote . "
"lamp . light . chandelier . "
"book . magazine . paper . pen . pencil . "
"bottle . cup . glass . mug . plate . bowl . fork . knife . spoon . "
"vase . plant . flower . pot . "
"clock . picture . frame . mirror . "
"pillow . cushion . blanket . towel . "
"bag . backpack . suitcase . "
"box . basket . container . "
"shoe . hat . coat . "
"toy . ball . "
"car . bicycle . motorcycle . bus . truck . "
"tree . grass . sky . cloud . sun . "
"dog . cat . bird . "
"building . house . bridge . road . street . "
"sign . pole . bench"
)
# V8: DBSCAN聚类配置
# 根据物体类型设置不同的聚类半径(eps)
DBSCAN_EPS_CONFIG = {
'sofa': 1.5, # 沙发:1.5米半径(大物体,同一个沙发的检测可能相距较远)
'bed': 1.5,
'couch': 1.5,
'desk': 0.8, # 桌子:0.8米半径(中等物体)
'table': 0.8,
'chair': 0.6, # 椅子:0.6米(较小)
'cabinet': 0.8,
'window': 0.5, # 窗户:0.5米(位置固定,聚类严格)
'door': 0.6,
'tv': 0.6,
'default': 1.0 # 默认:1米
}
DBSCAN_MIN_SAMPLES = 1 # 最小样本数(设为1意味着单个检测也能成为一个簇)
ENABLE_VISUAL_FEATURES = False
# 分割质量控制
MIN_DETECTION_CONFIDENCE = 0.35 # 最低检测置信度(过滤误检测)
MIN_MASK_AREA = 100 # 最小mask面积(像素)
# 匹配分数计算配置(用于备用匹配算法)
MATCH_3D_DISTANCE_THRESHOLD = 2.5 # 3D距离阈值(米)
# 全局模型变量
model = None
grounding_dino_model = None
grounding_dino_processor = None
sam_predictor = None
# ============================================================================
# 分割模型加载
# ============================================================================
def load_grounding_dino_model(device):
"""加载 GroundingDINO 模型 - 从 HuggingFace"""
global grounding_dino_model, grounding_dino_processor
if grounding_dino_model is not None:
print("✅ GroundingDINO 已加载")
return
try:
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
print(f"📥 从 HuggingFace 加载 GroundingDINO: {GROUNDING_DINO_MODEL_ID}")
grounding_dino_processor = AutoProcessor.from_pretrained(GROUNDING_DINO_MODEL_ID)
grounding_dino_model = AutoModelForZeroShotObjectDetection.from_pretrained(
GROUNDING_DINO_MODEL_ID
).to(device).eval()
print("✅ GroundingDINO 加载成功")
except Exception as e:
print(f"❌ GroundingDINO 加载失败: {e}")
import traceback
traceback.print_exc()
def load_sam_model(device):
"""加载 SAM 模型 - 从 HuggingFace"""
global sam_predictor
if sam_predictor is not None:
print("✅ SAM 已加载")
return
try:
from transformers import SamModel, SamProcessor
print(f"📥 从 HuggingFace 加载 SAM: {SAM_MODEL_ID}")
sam_model = SamModel.from_pretrained(SAM_MODEL_ID).to(device).eval()
sam_processor = SamProcessor.from_pretrained(SAM_MODEL_ID)
# 将模型和处理器存储为全局变量
sam_predictor = {'model': sam_model, 'processor': sam_processor}
print("✅ SAM 加载成功")
except Exception as e:
print(f"❌ SAM 加载失败: {e}")
print(" SAM 功能将被禁用,将使用边界框作为mask")
import traceback
traceback.print_exc()
# ============================================================================
# 分割功能
# ============================================================================
def generate_distinct_colors(n):
"""生成 N 个视觉上区分度高的颜色(RGB,0-255)"""
import colorsys
if n == 0:
return []
colors = []
for i in range(n):
hue = i / max(n, 1)
rgb = colorsys.hsv_to_rgb(hue, 0.9, 0.95)
rgb_color = tuple(int(c * 255) for c in rgb)
colors.append(rgb_color)
return colors
def run_grounding_dino_detection(image_np, text_prompt, device):
"""使用 GroundingDINO 进行检测"""
if grounding_dino_model is None or grounding_dino_processor is None:
print("⚠️ GroundingDINO 未加载")
return []
try:
print(f"🔍 GroundingDINO 检测: {text_prompt}")
# 转换为 PIL Image
if image_np.dtype == np.uint8:
pil_image = Image.fromarray(image_np)
else:
pil_image = Image.fromarray((image_np * 255).astype(np.uint8))
# 预处理
inputs = grounding_dino_processor(images=pil_image, text=text_prompt, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# 推理
with torch.no_grad():
outputs = grounding_dino_model(**inputs)
# 后处理
results = grounding_dino_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
threshold=GROUNDING_DINO_BOX_THRESHOLD,
text_threshold=GROUNDING_DINO_TEXT_THRESHOLD,
target_sizes=[pil_image.size[::-1]]
)[0]
# 转换为统一格式
detections = []
boxes = results["boxes"].cpu().numpy()
scores = results["scores"].cpu().numpy()
labels = results["labels"]
print(f"✅ 检测到 {len(boxes)} 个物体")
for box, score, label in zip(boxes, scores, labels):
detection = {
'bbox': box.tolist(), # [x1, y1, x2, y2]
'label': label,
'confidence': float(score)
}
detections.append(detection)
print(f" - {label}: {score:.2f}")
return detections
except Exception as e:
print(f"❌ GroundingDINO 检测失败: {e}")
import traceback
traceback.print_exc()
return []
def run_sam_refinement(image_np, boxes):
"""使用 SAM 精确分割 - HuggingFace Transformers 版本"""
if sam_predictor is None:
print("⚠️ SAM 未加载,使用 bbox 作为 mask")
# 使用 bbox 创建简单的矩形 mask
masks = []
h, w = image_np.shape[:2]
for box in boxes:
x1, y1, x2, y2 = map(int, box)
mask = np.zeros((h, w), dtype=bool)
mask[y1:y2, x1:x2] = True
masks.append(mask)
return masks
try:
print(f"🎯 SAM 精确分割 {len(boxes)} 个区域...")
from PIL import Image
sam_model = sam_predictor['model']
sam_processor = sam_predictor['processor']
device = sam_model.device
# 转换为 PIL Image
if image_np.dtype == np.uint8:
pil_image = Image.fromarray(image_np)
else:
pil_image = Image.fromarray((image_np * 255).astype(np.uint8))
masks = []
for box in boxes:
x1, y1, x2, y2 = map(int, box)
input_boxes = [[[x1, y1, x2, y2]]] # SAM 需要的格式
# 处理输入
inputs = sam_processor(pil_image, input_boxes=input_boxes, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# 推理
with torch.no_grad():
outputs = sam_model(**inputs)
# 后处理获取mask
pred_masks = sam_processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0] # 取第一个mask
masks.append(pred_masks.numpy() > 0.5)
print(f"✅ SAM 分割完成")
return masks
except Exception as e:
print(f"❌ SAM 分割失败: {e}")
import traceback
traceback.print_exc()
# Fallback to bbox masks
masks = []
h, w = image_np.shape[:2]
for box in boxes:
x1, y1, x2, y2 = map(int, box)
mask = np.zeros((h, w), dtype=bool)
mask[y1:y2, x1:x2] = True
masks.append(mask)
return masks
def normalize_label(label):
"""规范化标签,提取主要类别
例如: 'sofa bed' -> 'sofa', 'desk cabinet' -> 'desk', 'table desk' -> 'table'
'windows' -> 'window', 'chairs' -> 'chair' (单复数转换)
"""
label = label.strip().lower()
# 优先级顺序(从高到低)
priority_labels = ['sofa', 'bed', 'table', 'desk', 'chair', 'cabinet', 'window', 'door']
# 查找标签中是否包含优先级类别
for priority in priority_labels:
if priority in label:
return priority
# 如果没有匹配,返回第一个词
first_word = label.split()[0] if label else label
# 处理常见复数形式 -> 单数
if first_word.endswith('s') and len(first_word) > 1:
singular = first_word[:-1] # 去掉末尾的 's'
# 特殊复数规则
if first_word.endswith('sses'): # glasses -> glass
singular = first_word[:-2]
elif first_word.endswith('ies'): # cherries -> cherry
singular = first_word[:-3] + 'y'
elif first_word.endswith('ves'): # shelves -> shelf
singular = first_word[:-3] + 'f'
# 返回单数形式
return singular
return first_word
def labels_match(label1, label2):
"""判断两个标签是否匹配(支持模糊匹配)
例如: 'sofa' 和 'sofa bed' 匹配
'desk' 和 'table desk' 匹配
"""
norm1 = normalize_label(label1)
norm2 = normalize_label(label2)
return norm1 == norm2
def compute_object_3d_center(points, mask):
"""计算物体的 3D 中心点"""
masked_points = points[mask]
if len(masked_points) == 0:
return None
return np.median(masked_points, axis=0)
def compute_3d_bbox_iou(center1, size1, center2, size2):
"""计算两个3D边界框的IoU"""
try:
# 计算边界框范围 [min, max]
min1 = center1 - size1 / 2
max1 = center1 + size1 / 2
min2 = center2 - size2 / 2
max2 = center2 + size2 / 2
# 计算交集
inter_min = np.maximum(min1, min2)
inter_max = np.minimum(max1, max2)
inter_size = np.maximum(0, inter_max - inter_min)
inter_volume = np.prod(inter_size)
# 计算并集
volume1 = np.prod(size1)
volume2 = np.prod(size2)
union_volume = volume1 + volume2 - inter_volume
if union_volume == 0:
return 0.0
return inter_volume / union_volume
except:
return 0.0
def compute_2d_mask_iou(mask1, mask2):
"""计算两个2D mask的IoU"""
try:
intersection = np.logical_and(mask1, mask2).sum()
union = np.logical_or(mask1, mask2).sum()
if union == 0:
return 0.0
return intersection / union
except:
return 0.0
def extract_visual_features(image, mask, encoder):
"""提取mask区域的视觉特征(使用DINOv2)
Args:
image: [H, W, 3] float32 in [0, 1] or uint8 in [0, 255]
mask: [H, W] bool
encoder: DINOv2 encoder model
Returns:
feature vector (1D numpy array) or None if failed
"""
try:
# 将mask区域裁剪出来
coords = np.argwhere(mask)
if len(coords) == 0:
return None
y_min, x_min = coords.min(axis=0)
y_max, x_max = coords.max(axis=0)
# 确保裁剪区域有效
if y_max <= y_min or x_max <= x_min:
return None
# 裁剪并resize到224x224
cropped = image[y_min:y_max+1, x_min:x_max+1]
# 确保是 uint8 格式
if cropped.dtype == np.float32 or cropped.dtype == np.float64:
if cropped.max() <= 1.0:
cropped = (cropped * 255).astype(np.uint8)
else:
cropped = cropped.astype(np.uint8)
from PIL import Image
import torchvision.transforms as T
pil_img = Image.fromarray(cropped)
pil_img = pil_img.resize((224, 224), Image.BILINEAR)
# 转换为tensor
transform = T.Compose([
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 获取encoder的设备
try:
device = next(encoder.parameters()).device
except:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
img_tensor = transform(pil_img).unsqueeze(0).to(device) # [1, 3, 224, 224]
# 提取特征 - 使用 encoder 的前向传播
with torch.no_grad():
# 不同的encoder可能有不同的调用方式
if hasattr(encoder, 'forward_features'):
# 如果有 forward_features 方法(标准 DINOv2)
features = encoder.forward_features(img_tensor)
else:
# 否则直接调用(DINOv2Encoder 只需要 input tensor)
features = encoder(img_tensor)
# 如果 features 不是 tensor,尝试转换
if not isinstance(features, torch.Tensor):
if isinstance(features, dict):
# 如果返回字典,尝试获取 'x' 或 'last_hidden_state'
features = features.get('x', features.get('last_hidden_state', None))
if features is None:
return None
elif hasattr(features, 'data'):
# 如果是某种包装对象,尝试获取 data 属性
features = features.data
else:
# 无法处理,返回 None
return None
# 确保 features 是 tensor
if not isinstance(features, torch.Tensor):
return None
# 确保是 4D tensor: [B, C, H, W] 或 3D: [B, N, C] 或 2D: [B, C]
if len(features.shape) == 4:
# [B, C, H, W] -> Global average pooling
features = features.mean(dim=[2, 3]) # [B, C]
elif len(features.shape) == 3:
# [B, N, C] -> 取平均 or 取 CLS token
features = features.mean(dim=1) # [B, C]
elif len(features.shape) == 2:
# [B, C] -> 已经是我们需要的格式
pass
else:
# 不支持的 shape
return None
# L2 normalize
features = features / (features.norm(dim=1, keepdim=True) + 1e-8)
return features.cpu().numpy()[0]
except Exception as e:
import traceback
print(f" ⚠️ 特征提取失败: {type(e).__name__}: {e}")
print(f" 调用栈:\n{traceback.format_exc()}") # 显示完整堆栈
return None
def compute_feature_similarity(feat1, feat2):
"""计算特征相似度(余弦相似度)"""
if feat1 is None or feat2 is None:
return 0.0
try:
return np.dot(feat1, feat2)
except:
return 0.0
def compute_match_score(obj1, obj2, weights={'distance': 0.5, 'iou_3d': 0.25, 'iou_2d': 0.15, 'feature': 0.1}):
"""计算综合匹配分数(0-1)
动态调整权重:如果某个准则不可用,将其权重重新分配给其他准则
"""
scores = {}
available_criteria = []
# 1. 3D距离分数(距离越近,分数越高)
if obj1.get('center_3d') is not None and obj2.get('center_3d') is not None:
distance = np.linalg.norm(obj1['center_3d'] - obj2['center_3d'])
scores['distance'] = max(0, 1 - distance / MATCH_3D_DISTANCE_THRESHOLD)
available_criteria.append('distance')
else:
scores['distance'] = 0.0
# 2. 3D IoU分数
if obj1.get('bbox_3d') is not None and obj2.get('bbox_3d') is not None:
scores['iou_3d'] = compute_3d_bbox_iou(
obj1['bbox_3d']['center'], obj1['bbox_3d']['size'],
obj2['bbox_3d']['center'], obj2['bbox_3d']['size']
)
available_criteria.append('iou_3d')
else:
scores['iou_3d'] = 0.0
# 3. 2D IoU分数
if obj1.get('mask_2d') is not None and obj2.get('mask_2d') is not None:
scores['iou_2d'] = compute_2d_mask_iou(obj1['mask_2d'], obj2['mask_2d'])
available_criteria.append('iou_2d')
else:
scores['iou_2d'] = 0.0
# 4. 视觉特征相似度
if obj1.get('visual_feature') is not None and obj2.get('visual_feature') is not None:
scores['feature'] = compute_feature_similarity(obj1['visual_feature'], obj2['visual_feature'])
available_criteria.append('feature')
else:
scores['feature'] = 0.0
# 动态调整权重:只使用可用的准则
if len(available_criteria) == 0:
return 0.0, scores
# 重新归一化权重
total_available_weight = sum(weights[k] for k in available_criteria)
if total_available_weight == 0:
return 0.0, scores
adjusted_weights = {k: weights[k] / total_available_weight for k in available_criteria}
# 加权求和
total_score = sum(scores[k] * adjusted_weights[k] for k in available_criteria)
return total_score, scores
def compute_adaptive_eps(centers, base_eps):
"""自适应计算eps值
根据物体的3D位置分布自动调整eps:
- 如果物体很分散,增大eps(避免过度分割)
- 如果物体很集中,使用默认eps
"""
if len(centers) <= 1:
return base_eps
# 计算所有点之间的距离
from scipy.spatial.distance import pdist
distances = pdist(centers)
if len(distances) == 0:
return base_eps
# 使用中位数距离作为参考
median_dist = np.median(distances)
# 自适应策略:如果中位数距离很大,说明物体分散,增大eps
# 如果中位数距离很小,说明物体集中,保持或减小eps
if median_dist > base_eps * 2:
# 物体非常分散,大幅增大eps(可能是同一物体的多视图检测)
adaptive_eps = min(median_dist * 0.6, base_eps * 2.5)
elif median_dist > base_eps:
# 物体较分散,适度增大eps
adaptive_eps = median_dist * 0.5
else:
# 物体集中,使用默认eps
adaptive_eps = base_eps
return adaptive_eps
def match_objects_across_views(all_view_detections):
"""跨视图匹配相同物体(V8增强版:自适应DBSCAN聚类)
V8增强版改进:
- 自适应eps:根据物体分布自动调整聚类半径
- 智能合并:聚类后再检查是否有明显重复的簇
- 置信度加权:使用置信度加权计算簇中心
Args:
all_view_detections: List[List[Dict]], 每个视图的检测结果
Returns:
object_id_map: Dict[view_idx][det_idx] = global_object_id
unique_objects: List[Dict] - 唯一物体列表
"""
print("\n🔗 V8增强版: 自适应DBSCAN聚类匹配物体...")
# 收集所有检测,按标签分组
objects_by_label = defaultdict(list)
for view_idx, detections in enumerate(all_view_detections):
for det_idx, det in enumerate(detections):
# 只处理有3D中心的物体
if det.get('center_3d') is None:
continue
norm_label = normalize_label(det['label'])
objects_by_label[norm_label].append({
'view_idx': view_idx,
'det_idx': det_idx,
'label': det['label'],
'norm_label': norm_label,
'center_3d': det['center_3d'],
'confidence': det['confidence'],
'bbox_3d': det.get('bbox_3d'),
})
if len(objects_by_label) == 0:
return {}, []
# V8: 对每种物体类别分别进行DBSCAN聚类
object_id_map = defaultdict(dict)
unique_objects = []
next_global_id = 0
for norm_label, objects in objects_by_label.items():
print(f"\n 📦 处理 {norm_label}: {len(objects)} 个检测")
# 如果只有1个检测,直接作为1个物体
if len(objects) == 1:
obj = objects[0]
unique_objects.append({
'global_id': next_global_id,
'label': obj['label'],
'views': [(obj['view_idx'], obj['det_idx'])],
'center_3d': obj['center_3d'],
})
object_id_map[obj['view_idx']][obj['det_idx']] = next_global_id
next_global_id += 1
print(f" → 1个簇(单独检测)")
continue
# 提取3D中心点坐标
centers = np.array([obj['center_3d'] for obj in objects])
# 获取该类型的基础聚类半径
base_eps = DBSCAN_EPS_CONFIG.get(norm_label, DBSCAN_EPS_CONFIG.get('default', 1.0))
# 🔥 V8增强:自适应计算eps
eps = compute_adaptive_eps(centers, base_eps)
# DBSCAN聚类
clustering = DBSCAN(eps=eps, min_samples=DBSCAN_MIN_SAMPLES, metric='euclidean')
cluster_labels = clustering.fit_predict(centers)
# 统计簇
n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
n_noise = list(cluster_labels).count(-1)
if eps != base_eps:
print(f" → {n_clusters} 个簇 (基础eps={base_eps}m → 自适应eps={eps:.2f}m)")
else:
print(f" → {n_clusters} 个簇 (eps={eps}m)")
if n_noise > 0:
print(f" ⚠️ {n_noise} 个噪声点(孤立检测)")
# 调试:显示每个簇的详细信息
for cluster_id in sorted(set(cluster_labels)):
if cluster_id == -1:
continue
cluster_objs = [objects[i] for i, label in enumerate(cluster_labels) if label == cluster_id]
cluster_centers = [obj['center_3d'] for obj in cluster_objs]
cluster_views = [f"V{obj['view_idx']+1}" for obj in cluster_objs]
# 计算簇内最大距离
max_dist = 0
if len(cluster_centers) > 1:
from scipy.spatial.distance import pdist
distances = pdist(np.array(cluster_centers))
max_dist = distances.max() if len(distances) > 0 else 0
print(f" 簇 {cluster_id}: {len(cluster_objs)} 个检测 (来自视图: {', '.join(cluster_views)}, 最大簇内距离: {max_dist:.2f}m)")
# 为每个簇创建一个全局物体
cluster_to_global_id = {}
for cluster_id in set(cluster_labels):
if cluster_id == -1:
# 噪声点,每个单独成为一个物体
for i, label in enumerate(cluster_labels):
if label == -1:
obj = objects[i]
unique_objects.append({
'global_id': next_global_id,
'label': obj['label'],
'views': [(obj['view_idx'], obj['det_idx'])],
'center_3d': obj['center_3d'],
})
object_id_map[obj['view_idx']][obj['det_idx']] = next_global_id
next_global_id += 1
else:
# 正常簇
cluster_objects = [objects[i] for i, label in enumerate(cluster_labels) if label == cluster_id]
# 计算簇的中心(加权平均,权重为置信度)
total_conf = sum(o['confidence'] for o in cluster_objects)
weighted_center = sum(o['center_3d'] * o['confidence'] for o in cluster_objects) / total_conf
# 创建全局物体
unique_objects.append({
'global_id': next_global_id,
'label': cluster_objects[0]['label'],
'views': [(o['view_idx'], o['det_idx']) for o in cluster_objects],
'center_3d': weighted_center,
})
# 映射所有检测到这个全局ID
for obj in cluster_objects:
object_id_map[obj['view_idx']][obj['det_idx']] = next_global_id
print(f" 簇 {cluster_id}: {len(cluster_objects)} 个检测合并")
next_global_id += 1
print(f"\n 📊 总结:")
print(f" 总检测数: {sum(len(objs) for objs in objects_by_label.values())}")
print(f" 唯一物体: {len(unique_objects)}")
# 打印匹配结果(按规范化标签统计)
label_counts = defaultdict(int)
original_labels = defaultdict(set)
for obj in unique_objects:
norm_label = normalize_label(obj['label'])
label_counts[norm_label] += 1
original_labels[norm_label].add(obj['label'])
print(f"\n 📊 物体类别统计(规范化后):")
for norm_label, count in sorted(label_counts.items()):
orig_labels = original_labels[norm_label]
if len(orig_labels) > 1:
print(f" {norm_label} (原标签: {', '.join(sorted(orig_labels))}): {count} 个")
else:
print(f" {norm_label}: {count} 个")
return object_id_map, unique_objects
def create_multi_view_segmented_mesh(processed_data, all_view_detections, all_view_masks,
object_id_map, unique_objects, target_dir, use_sam=True):
"""创建多视图融合的分割 mesh(使用 utils3d.image_mesh)"""
try:
print("\n🎨 生成多视图分割 mesh...")
# 按物体类别(label)分配颜色,使用规范化标签避免组合标签问题
# 获取所有不同的规范化类别
unique_normalized_labels = sorted(set(normalize_label(obj['label']) for obj in unique_objects))
label_colors = {}
colors = generate_distinct_colors(len(unique_normalized_labels))
# 为规范化标签分配颜色
for i, norm_label in enumerate(unique_normalized_labels):
label_colors[norm_label] = colors[i]
# 为每个唯一物体分配基于规范化类别的颜色
for obj in unique_objects:
norm_label = normalize_label(obj['label'])
obj['color'] = label_colors[norm_label]
obj['normalized_label'] = norm_label # 保存规范化标签
# 打印类别-颜色映射(按规范化标签)
print(f" 物体类别颜色映射(规范化标签):")
for norm_label, color in sorted(label_colors.items()):
count = sum(1 for obj in unique_objects if normalize_label(obj['label']) == norm_label)
# 显示所有原始标签
original_labels = set(obj['label'] for obj in unique_objects if normalize_label(obj['label']) == norm_label)
if len(original_labels) > 1:
print(f" {norm_label} (包含: {', '.join(sorted(original_labels))}) × {count} → RGB{color}")
else:
print(f" {norm_label} × {count} → RGB{color}")
# 导入 utils3d
import utils3d
all_meshes = []
# 为每个视图生成 mesh
for view_idx in range(len(processed_data)):
view_data = processed_data[view_idx]
image = view_data["image"]
points3d = view_data["points3d"]
mask = view_data.get("mask")
normal = view_data.get("normal")
detections = all_view_detections[view_idx]
masks = all_view_masks[view_idx]
if len(detections) == 0:
continue
# 确保图像在 [0, 255] 范围
if image.dtype != np.uint8:
if image.max() <= 1.0:
image = (image * 255).astype(np.uint8)
else:
image = image.astype(np.uint8)
# 创建彩色图像(使用置信度优先策略避免颜色混乱)
colored_image = image.copy()
confidence_map = np.zeros((image.shape[0], image.shape[1]), dtype=np.float32) # 记录每个像素的置信度
# 收集所有检测及其信息(应用质量过滤)
detections_info = []
filtered_count = 0
for det_idx, (det, seg_mask) in enumerate(zip(detections, masks)):
# 过滤低置信度检测
if det['confidence'] < MIN_DETECTION_CONFIDENCE:
filtered_count += 1
continue
# 过滤过小的mask
mask_area = seg_mask.sum()
if mask_area < MIN_MASK_AREA:
filtered_count += 1
continue
global_id = object_id_map[view_idx].get(det_idx)
if global_id is None:
continue
unique_obj = next((obj for obj in unique_objects if obj['global_id'] == global_id), None)
if unique_obj is None:
continue
detections_info.append({
'mask': seg_mask,
'color': unique_obj['color'],
'confidence': det['confidence'],
'label': det['label'],
'area': mask_area
})
if filtered_count > 0:
print(f" 视图 {view_idx + 1}: 过滤了 {filtered_count} 个低质量检测")
# 按置信度排序(从低到高),这样高置信度的会最后写入
detections_info.sort(key=lambda x: x['confidence'])
# 应用颜色(置信度高的优先)
for info in detections_info:
seg_mask = info['mask']
color = info['color']
conf = info['confidence']
# 只在当前置信度更高的地方覆盖
update_mask = seg_mask & (conf > confidence_map)
colored_image[update_mask] = color
confidence_map[update_mask] = conf
# 使用 utils3d.image_mesh 生成 mesh
height, width = image.shape[:2]
if normal is None:
faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh(
points3d,
colored_image.astype(np.float32) / 255,
utils3d.numpy.image_uv(width=width, height=height),
mask=mask if mask is not None else np.ones((height, width), dtype=bool),
tri=True
)
vertex_normals = None
else:
faces, vertices, vertex_colors, vertex_uvs, vertex_normals = utils3d.numpy.image_mesh(
points3d,
colored_image.astype(np.float32) / 255,
utils3d.numpy.image_uv(width=width, height=height),
normal,
mask=mask if mask is not None else np.ones((height, width), dtype=bool),
tri=True
)
# 坐标变换
vertices = vertices * np.array([1, -1, -1], dtype=np.float32)
if vertex_normals is not None:
vertex_normals = vertex_normals * np.array([1, -1, -1], dtype=np.float32)
# 创建 mesh
view_mesh = trimesh.Trimesh(
vertices=vertices,
faces=faces,
vertex_normals=vertex_normals,
vertex_colors=(vertex_colors * 255).astype(np.uint8),
process=False
)
all_meshes.append(view_mesh)
print(f" 视图 {view_idx + 1}: {len(vertices):,} 顶点, {len(faces):,} 面")
if len(all_meshes) == 0:
print("⚠️ 未生成任何 mesh")
return None
# 融合所有 mesh
print(" 融合所有视图...")
combined_mesh = trimesh.util.concatenate(all_meshes)
# 保存
glb_path = os.path.join(target_dir, 'multi_view_segmented_mesh.glb')
combined_mesh.export(glb_path)
print(f"✅ 多视图分割 mesh 已保存: {glb_path}")
print(f" 总计: {len(combined_mesh.vertices):,} 顶点, {len(combined_mesh.faces):,} 面")
print(f" {len(unique_objects)} 个唯一物体")
return glb_path
except Exception as e:
print(f"❌ 生成多视图 mesh 失败: {e}")
import traceback
traceback.print_exc()
return None
def create_segmented_pointcloud(processed_data, detections, masks, target_dir, use_sam=True):
"""创建分割点云(单视图,仅用于兼容)"""
if len(detections) == 0:
return None
try:
print(f"🎨 生成分割点云...")
# 使用第一个视图
first_view = processed_data[0]
image = first_view["image"]
points3d = first_view["points3d"]
normal = first_view.get("normal")
mask = first_view.get("mask")
# 确保图像在 [0, 255] 范围
if image.dtype != np.uint8:
if image.max() <= 1.0:
image = (image * 255).astype(np.uint8)
else:
image = image.astype(np.uint8)
# 生成颜色
distinct_colors = generate_distinct_colors(len(detections))
# 创建彩色图像
colored_image = image.copy()
for i, (det, seg_mask) in enumerate(zip(detections, masks)):
color = distinct_colors[i]
colored_image[seg_mask] = color
print(f" {det['label']} → RGB{color}")
# 生成点云(使用 MapAnything 的方法)
height, width = image.shape[:2]
# 简单方法:直接从 points3d 生成顶点颜色
vertices = points3d.reshape(-1, 3)
colors = (colored_image.astype(np.float32) / 255.0).reshape(-1, 3)
if mask is not None:
valid_mask = mask.reshape(-1)
vertices = vertices[valid_mask]
colors = colors[valid_mask]
# 坐标变换
vertices = vertices * np.array([1, -1, -1], dtype=np.float32)
# 创建点云
pointcloud = trimesh.PointCloud(
vertices=vertices,
colors=(colors * 255).astype(np.uint8)
)
# 保存
seg_glb_path = os.path.join(target_dir, 'segmented_pointcloud.glb')
pointcloud.export(seg_glb_path)
print(f"✅ 分割点云已保存: {seg_glb_path}")
return seg_glb_path
except Exception as e:
print(f"❌ 生成分割点云失败: {e}")
import traceback
traceback.print_exc()
return None
# ============================================================================
# 核心模型推理
# ============================================================================
@spaces.GPU(duration=120)
def run_model(
target_dir,
apply_mask=True,
mask_edges=True,
filter_black_bg=False,
filter_white_bg=False,
enable_segmentation=False,
text_prompt=DEFAULT_TEXT_PROMPT,
use_sam=True,
):
"""
Run the MapAnything model + GroundingDINO + SAM segmentation
"""
global model, grounding_dino_model, sam_predictor
import torch
print(f"处理图像: {target_dir}")
# 设备检查
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
# 初始化 MapAnything 模型 - 从 HuggingFace
if model is None:
print("📥 从 HuggingFace 加载 MapAnything...")
model = initialize_mapanything_model(high_level_config, device)
print("✅ MapAnything 加载成功")
else:
model = model.to(device)
model.eval()
# 加载分割模型
if enable_segmentation:
load_grounding_dino_model(device)
if use_sam:
load_sam_model(device)
# 加载图像
print("加载图像...")
image_folder_path = os.path.join(target_dir, "images")
views = load_images(image_folder_path)
print(f"加载了 {len(views)} 张图像")
if len(views) == 0:
raise ValueError("未找到图像")
# 运行 MapAnything 推理
print("运行 3D 重建...")
outputs = model.infer(
views, apply_mask=apply_mask, mask_edges=True, memory_efficient_inference=False
)
# 转换预测结果
predictions = {}
extrinsic_list = []
intrinsic_list = []
world_points_list = []
depth_maps_list = []
images_list = []
final_mask_list = []
confidences = []
for pred in outputs:
depthmap_torch = pred["depth_z"][0].squeeze(-1)
intrinsics_torch = pred["intrinsics"][0]
camera_pose_torch = pred["camera_poses"][0]
conf = pred["conf"][0].squeeze(-1)
pts3d_computed, valid_mask = depthmap_to_world_frame(
depthmap_torch, intrinsics_torch, camera_pose_torch
)
if "mask" in pred:
mask = pred["mask"][0].squeeze(-1).cpu().numpy().astype(bool)
else:
mask = np.ones_like(depthmap_torch.cpu().numpy(), dtype=bool)
mask = mask & valid_mask.cpu().numpy()
image = pred["img_no_norm"][0].cpu().numpy()
extrinsic_list.append(camera_pose_torch.cpu().numpy())
intrinsic_list.append(intrinsics_torch.cpu().numpy())
world_points_list.append(pts3d_computed.cpu().numpy())
depth_maps_list.append(depthmap_torch.cpu().numpy())
images_list.append(image)
final_mask_list.append(mask)
confidences.append(conf.cpu().numpy())
predictions["extrinsic"] = np.stack(extrinsic_list, axis=0)
predictions["intrinsic"] = np.stack(intrinsic_list, axis=0)
predictions["world_points"] = np.stack(world_points_list, axis=0)
predictions["conf"] = np.stack(confidences, axis=0)
depth_maps = np.stack(depth_maps_list, axis=0)
if len(depth_maps.shape) == 3:
depth_maps = depth_maps[..., np.newaxis]
predictions["depth"] = depth_maps
predictions["images"] = np.stack(images_list, axis=0)
predictions["final_mask"] = np.stack(final_mask_list, axis=0)
# 处理可视化数据
processed_data = process_predictions_for_visualization(
predictions, views, high_level_config, filter_black_bg, filter_white_bg
)
# 多视图分割处理
segmented_glb = None
if enable_segmentation and grounding_dino_model is not None:
print("\n🎯 开始多视图分割...")
print(f"🔍 使用检测提示: {text_prompt[:100]}...")
all_view_detections = []
all_view_masks = []
# 对每个视图进行分割
for view_idx, ref_image in enumerate(images_list):
print(f"\n📸 处理视图 {view_idx + 1}/{len(images_list)}...")
if ref_image.dtype != np.uint8:
ref_image_np = (ref_image * 255).astype(np.uint8)
else:
ref_image_np = ref_image
# GroundingDINO 检测
detections = run_grounding_dino_detection(ref_image_np, text_prompt, device)
if len(detections) > 0:
# SAM 精确分割
boxes = [d['bbox'] for d in detections]
masks = run_sam_refinement(ref_image_np, boxes) if use_sam else []
# 获取3D点云和encoder(用于特征提取)
points3d = world_points_list[view_idx]
encoder = model.encoder if hasattr(model, 'encoder') else None
# V5: 为每个检测物体提取多种特征
for det_idx, (det, mask) in enumerate(zip(detections, masks)):
# 1. 计算3D中心点
center_3d = compute_object_3d_center(points3d, mask)
det['center_3d'] = center_3d
# 2. 计算3D边界框
if center_3d is not None:
masked_points = points3d[mask]
if len(masked_points) > 0:
bbox_min = masked_points.min(axis=0)
bbox_max = masked_points.max(axis=0)
bbox_size = bbox_max - bbox_min
det['bbox_3d'] = {
'center': center_3d,
'size': bbox_size,
'min': bbox_min,
'max': bbox_max
}
# 3. 存储2D mask(用于IoU计算)
det['mask_2d'] = mask
# 4. 提取视觉特征(DINOv2)- 可选
if ENABLE_VISUAL_FEATURES and encoder is not None:
visual_feat = extract_visual_features(ref_image, mask, encoder)
det['visual_feature'] = visual_feat
else:
det['visual_feature'] = None
all_view_detections.append(detections)
all_view_masks.append(masks)
else:
all_view_detections.append([])
all_view_masks.append([])
# 跨视图匹配物体
if any(len(dets) > 0 for dets in all_view_detections):
object_id_map, unique_objects = match_objects_across_views(all_view_detections)
# 生成多视图分割 mesh
segmented_glb = create_multi_view_segmented_mesh(
processed_data, all_view_detections, all_view_masks,
object_id_map, unique_objects, target_dir, use_sam
)
# 清理
torch.cuda.empty_cache()
return predictions, processed_data, segmented_glb
# ============================================================================
# 从 gradio_app.py 复制的其他函数
# ============================================================================
def update_view_selectors(processed_data):
"""Update view selector dropdowns based on available views"""
if processed_data is None or len(processed_data) == 0:
choices = ["View 1"]
else:
num_views = len(processed_data)
choices = [f"View {i + 1}" for i in range(num_views)]
return (
gr.Dropdown(choices=choices, value=choices[0]),
gr.Dropdown(choices=choices, value=choices[0]),
gr.Dropdown(choices=choices, value=choices[0]),
)
def get_view_data_by_index(processed_data, view_index):
"""Get view data by index, handling bounds"""
if processed_data is None or len(processed_data) == 0:
return None
view_keys = list(processed_data.keys())
if view_index < 0 or view_index >= len(view_keys):
view_index = 0
return processed_data[view_keys[view_index]]
def update_depth_view(processed_data, view_index):
"""Update depth view for a specific view index"""
view_data = get_view_data_by_index(processed_data, view_index)
if view_data is None or view_data["depth"] is None:
return None
return colorize_depth(view_data["depth"], mask=view_data.get("mask"))
def update_normal_view(processed_data, view_index):
"""Update normal view for a specific view index"""
view_data = get_view_data_by_index(processed_data, view_index)
if view_data is None or view_data["normal"] is None:
return None
return colorize_normal(view_data["normal"], mask=view_data.get("mask"))
def update_measure_view(processed_data, view_index):
"""Update measure view for a specific view index with mask overlay"""
view_data = get_view_data_by_index(processed_data, view_index)
if view_data is None:
return None, []
image = view_data["image"].copy()
if image.dtype != np.uint8:
if image.max() <= 1.0:
image = (image * 255).astype(np.uint8)
else:
image = image.astype(np.uint8)
if view_data["mask"] is not None:
mask = view_data["mask"]
invalid_mask = ~mask
if invalid_mask.any():
overlay_color = np.array([255, 220, 220], dtype=np.uint8)
alpha = 0.5
for c in range(3):
image[:, :, c] = np.where(
invalid_mask,
(1 - alpha) * image[:, :, c] + alpha * overlay_color[c],
image[:, :, c],
).astype(np.uint8)
return image, []
def navigate_depth_view(processed_data, current_selector_value, direction):
"""Navigate depth view"""
if processed_data is None or len(processed_data) == 0:
return "View 1", None
try:
current_view = int(current_selector_value.split()[1]) - 1
except:
current_view = 0
num_views = len(processed_data)
new_view = (current_view + direction) % num_views
new_selector_value = f"View {new_view + 1}"
depth_vis = update_depth_view(processed_data, new_view)
return new_selector_value, depth_vis
def navigate_normal_view(processed_data, current_selector_value, direction):
"""Navigate normal view"""
if processed_data is None or len(processed_data) == 0:
return "View 1", None
try:
current_view = int(current_selector_value.split()[1]) - 1
except:
current_view = 0
num_views = len(processed_data)
new_view = (current_view + direction) % num_views
new_selector_value = f"View {new_view + 1}"
normal_vis = update_normal_view(processed_data, new_view)
return new_selector_value, normal_vis
def navigate_measure_view(processed_data, current_selector_value, direction):
"""Navigate measure view"""
if processed_data is None or len(processed_data) == 0:
return "View 1", None, []
try:
current_view = int(current_selector_value.split()[1]) - 1
except:
current_view = 0
num_views = len(processed_data)
new_view = (current_view + direction) % num_views
new_selector_value = f"View {new_view + 1}"
measure_image, measure_points = update_measure_view(processed_data, new_view)
return new_selector_value, measure_image, measure_points
def populate_visualization_tabs(processed_data):
"""Populate the depth, normal, and measure tabs with processed data"""
if processed_data is None or len(processed_data) == 0:
return None, None, None, []
depth_vis = update_depth_view(processed_data, 0)
normal_vis = update_normal_view(processed_data, 0)
measure_img, _ = update_measure_view(processed_data, 0)
return depth_vis, normal_vis, measure_img, []
def handle_uploads(input_video, input_images, s_time_interval=1.0):
"""Handle uploaded video/images"""
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
target_dir = f"input_images_{timestamp}"
target_dir_images = os.path.join(target_dir, "images")
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(target_dir)
os.makedirs(target_dir_images)
image_paths = []
# Handle images
if input_images is not None:
for file_data in input_images:
if isinstance(file_data, dict) and "name" in file_data:
file_path = file_data["name"]
else:
file_path = file_data
file_ext = os.path.splitext(file_path)[1].lower()
if file_ext in [".heic", ".heif"]:
try:
with Image.open(file_path) as img:
if img.mode not in ("RGB", "L"):
img = img.convert("RGB")
base_name = os.path.splitext(os.path.basename(file_path))[0]
dst_path = os.path.join(target_dir_images, f"{base_name}.jpg")
img.save(dst_path, "JPEG", quality=95)
image_paths.append(dst_path)
except Exception as e:
print(f"Error converting HEIC: {e}")
dst_path = os.path.join(target_dir_images, os.path.basename(file_path))
shutil.copy(file_path, dst_path)
image_paths.append(dst_path)
else:
dst_path = os.path.join(target_dir_images, os.path.basename(file_path))
shutil.copy(file_path, dst_path)
image_paths.append(dst_path)
# Handle video
if input_video is not None:
if isinstance(input_video, dict) and "name" in input_video:
video_path = input_video["name"]
else:
video_path = input_video
vs = cv2.VideoCapture(video_path)
fps = vs.get(cv2.CAP_PROP_FPS)
frame_interval = int(fps * s_time_interval)
count = 0
video_frame_num = 0
while True:
gotit, frame = vs.read()
if not gotit:
break
count += 1
if count % frame_interval == 0:
image_path = os.path.join(target_dir_images, f"{video_frame_num:06}.png")
cv2.imwrite(image_path, frame)
image_paths.append(image_path)
video_frame_num += 1
image_paths = sorted(image_paths)
end_time = time.time()
print(f"Files copied to {target_dir_images}; took {end_time - start_time:.3f} seconds")
return target_dir, image_paths
def update_gallery_on_upload(input_video, input_images, s_time_interval=1.0):
"""Update gallery on upload"""
if not input_video and not input_images:
return None, None, None, None, None
target_dir, image_paths = handle_uploads(input_video, input_images, s_time_interval)
return (
None,
None,
target_dir,
image_paths,
"上传完成,点击「重建」开始 3D 处理",
)
@spaces.GPU(duration=120)
def gradio_demo(
target_dir,
frame_filter="All",
show_cam=True,
filter_black_bg=False,
filter_white_bg=False,
conf_thres=3.0,
apply_mask=True,
show_mesh=True,
enable_segmentation=False,
text_prompt=DEFAULT_TEXT_PROMPT,
use_sam=True,
):
"""Perform reconstruction"""
if not os.path.isdir(target_dir) or target_dir == "None":
return None, None, "请先上传文件", None, None, None, None, None, None, None, None
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
target_dir_images = os.path.join(target_dir, "images")
all_files = sorted(os.listdir(target_dir_images)) if os.path.isdir(target_dir_images) else []
all_files_display = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
frame_filter_choices = ["All"] + all_files_display
print("运行 MapAnything 模型...")
with torch.no_grad():
predictions, processed_data, segmented_glb = run_model(
target_dir, apply_mask, True, filter_black_bg, filter_white_bg,
enable_segmentation, text_prompt, use_sam
)
# 保存预测结果
prediction_save_path = os.path.join(target_dir, "predictions.npz")
np.savez(prediction_save_path, **predictions)
if frame_filter is None:
frame_filter = "All"
# 生成原始 GLB
glbfile = os.path.join(
target_dir,
f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}.glb",
)
glbscene = predictions_to_glb(
predictions,
filter_by_frames=frame_filter,
show_cam=show_cam,
mask_black_bg=filter_black_bg,
mask_white_bg=filter_white_bg,
as_mesh=show_mesh,
conf_percentile=conf_thres,
)
glbscene.export(file_obj=glbfile)
# 清理
del predictions
gc.collect()
torch.cuda.empty_cache()
end_time = time.time()
print(f"总耗时: {end_time - start_time:.2f}秒")
log_msg = f"✅ 重建成功 ({len(all_files)} 帧)"
# 填充可视化标签
depth_vis, normal_vis, measure_img, measure_pts = populate_visualization_tabs(processed_data)
# 更新视图选择器
depth_selector, normal_selector, measure_selector = update_view_selectors(processed_data)
return (
glbfile,
segmented_glb,
log_msg,
gr.Dropdown(choices=frame_filter_choices, value=frame_filter, interactive=True),
processed_data,
depth_vis,
normal_vis,
measure_img,
"",
depth_selector,
normal_selector,
measure_selector,
)
def colorize_depth(depth_map, mask=None):
"""Convert depth map to colorized visualization"""
if depth_map is None:
return None
depth_normalized = depth_map.copy()
valid_mask = depth_normalized > 0
if mask is not None:
valid_mask = valid_mask & mask
if valid_mask.sum() > 0:
valid_depths = depth_normalized[valid_mask]
p5 = np.percentile(valid_depths, 5)
p95 = np.percentile(valid_depths, 95)
depth_normalized[valid_mask] = (depth_normalized[valid_mask] - p5) / (p95 - p5)
import matplotlib.pyplot as plt
colormap = plt.cm.turbo_r
colored = colormap(depth_normalized)
colored = (colored[:, :, :3] * 255).astype(np.uint8)
colored[~valid_mask] = [255, 255, 255]
return colored
def colorize_normal(normal_map, mask=None):
"""Convert normal map to colorized visualization"""
if normal_map is None:
return None
normal_vis = normal_map.copy()
if mask is not None:
invalid_mask = ~mask
normal_vis[invalid_mask] = [0, 0, 0]
normal_vis = (normal_vis + 1.0) / 2.0
normal_vis = (normal_vis * 255).astype(np.uint8)
return normal_vis
def process_predictions_for_visualization(
predictions, views, high_level_config, filter_black_bg=False, filter_white_bg=False
):
"""Extract depth, normal, and 3D points from predictions for visualization"""
processed_data = {}
for view_idx, view in enumerate(views):
image = rgb(view["img"], norm_type=high_level_config["data_norm_type"])
pred_pts3d = predictions["world_points"][view_idx]
view_data = {
"image": image[0],
"points3d": pred_pts3d,
"depth": None,
"normal": None,
"mask": None,
}
mask = predictions["final_mask"][view_idx].copy()
if filter_black_bg:
view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
black_bg_mask = view_colors.sum(axis=2) >= 16
mask = mask & black_bg_mask
if filter_white_bg:
view_colors = image[0] * 255 if image[0].max() <= 1.0 else image[0]
white_bg_mask = ~(
(view_colors[:, :, 0] > 240)
& (view_colors[:, :, 1] > 240)
& (view_colors[:, :, 2] > 240)
)
mask = mask & white_bg_mask
view_data["mask"] = mask
view_data["depth"] = predictions["depth"][view_idx].squeeze()
normals, _ = points_to_normals(pred_pts3d, mask=view_data["mask"])
view_data["normal"] = normals
processed_data[view_idx] = view_data
return processed_data
def reset_measure(processed_data):
"""Reset measure points"""
if processed_data is None or len(processed_data) == 0:
return None, [], ""
first_view = list(processed_data.values())[0]
return first_view["image"], [], ""
def measure(processed_data, measure_points, current_view_selector, event: gr.SelectData):
"""Handle measurement on images"""
try:
if processed_data is None or len(processed_data) == 0:
return None, [], "没有可用数据"
try:
current_view_index = int(current_view_selector.split()[1]) - 1
except:
current_view_index = 0
if current_view_index < 0 or current_view_index >= len(processed_data):
current_view_index = 0
view_keys = list(processed_data.keys())
current_view = processed_data[view_keys[current_view_index]]
if current_view is None:
return None, [], "没有视图数据"
point2d = event.index[0], event.index[1]
if (
current_view["mask"] is not None
and 0 <= point2d[1] < current_view["mask"].shape[0]
and 0 <= point2d[0] < current_view["mask"].shape[1]
):
if not current_view["mask"][point2d[1], point2d[0]]:
masked_image, _ = update_measure_view(processed_data, current_view_index)
return (
masked_image,
measure_points,
'<span style="color: red; font-weight: bold;">无法在遮罩区域测量(显示为灰色)</span>',
)
measure_points.append(point2d)
image, _ = update_measure_view(processed_data, current_view_index)
if image is None:
return None, [], "没有可用图像"
image = image.copy()
points3d = current_view["points3d"]
if image.dtype != np.uint8:
if image.max() <= 1.0:
image = (image * 255).astype(np.uint8)
else:
image = image.astype(np.uint8)
for p in measure_points:
if 0 <= p[0] < image.shape[1] and 0 <= p[1] < image.shape[0]:
image = cv2.circle(image, p, radius=5, color=(255, 0, 0), thickness=2)
depth_text = ""
for i, p in enumerate(measure_points):
if (
current_view["depth"] is not None
and 0 <= p[1] < current_view["depth"].shape[0]
and 0 <= p[0] < current_view["depth"].shape[1]
):
d = current_view["depth"][p[1], p[0]]
depth_text += f"- **P{i + 1} 深度: {d:.2f}m.**\n"
else:
if (
points3d is not None
and 0 <= p[1] < points3d.shape[0]
and 0 <= p[0] < points3d.shape[1]
):
z = points3d[p[1], p[0], 2]
depth_text += f"- **P{i + 1} Z坐标: {z:.2f}m.**\n"
if len(measure_points) == 2:
point1, point2 = measure_points
if (
0 <= point1[0] < image.shape[1]
and 0 <= point1[1] < image.shape[0]
and 0 <= point2[0] < image.shape[1]
and 0 <= point2[1] < image.shape[0]
):
image = cv2.line(image, point1, point2, color=(255, 0, 0), thickness=2)
distance_text = "- **距离: 无法计算**"
if (
points3d is not None
and 0 <= point1[1] < points3d.shape[0]
and 0 <= point1[0] < points3d.shape[1]
and 0 <= point2[1] < points3d.shape[0]
and 0 <= point2[0] < points3d.shape[1]
):
try:
p1_3d = points3d[point1[1], point1[0]]
p2_3d = points3d[point2[1], point2[0]]
distance = np.linalg.norm(p1_3d - p2_3d)
distance_text = f"- **距离: {distance:.2f}m**"
except Exception as e:
distance_text = f"- **距离计算错误: {e}**"
measure_points = []
text = depth_text + distance_text
return [image, measure_points, text]
else:
return [image, measure_points, depth_text]
except Exception as e:
print(f"测量错误: {e}")
return None, [], f"测量错误: {e}"
def clear_fields():
"""Clear 3D viewer"""
return None, None
def update_log():
"""Display log message"""
return "加载和重建中..."
def update_visualization(
target_dir,
frame_filter,
show_cam,
is_example,
conf_thres=None,
filter_black_bg=False,
filter_white_bg=False,
show_mesh=True,
):
"""Update visualization"""
if is_example == "True":
return gr.update(), "没有可用的重建。请先点击重建按钮。"
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
return gr.update(), "没有可用的重建。请先点击重建按钮。"
predictions_path = os.path.join(target_dir, "predictions.npz")
if not os.path.exists(predictions_path):
return gr.update(), f"没有可用的重建。请先运行「重建」。"
loaded = np.load(predictions_path, allow_pickle=True)
predictions = {key: loaded[key] for key in loaded.keys()}
glbfile = os.path.join(
target_dir,
f"glbscene_{frame_filter.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_cam}_mesh{show_mesh}_black{filter_black_bg}_white{filter_white_bg}.glb",
)
glbscene = predictions_to_glb(
predictions,
filter_by_frames=frame_filter,
show_cam=show_cam,
mask_black_bg=filter_black_bg,
mask_white_bg=filter_white_bg,
as_mesh=show_mesh,
conf_percentile=conf_thres,
)
glbscene.export(file_obj=glbfile)
return glbfile, "可视化已更新。"
def update_all_views_on_filter_change(
target_dir,
filter_black_bg,
filter_white_bg,
processed_data,
depth_view_selector,
normal_view_selector,
measure_view_selector,
):
"""Update all views on filter change"""
if not target_dir or target_dir == "None" or not os.path.isdir(target_dir):
return processed_data, None, None, None, []
predictions_path = os.path.join(target_dir, "predictions.npz")
if not os.path.exists(predictions_path):
return processed_data, None, None, None, []
try:
loaded = np.load(predictions_path, allow_pickle=True)
predictions = {key: loaded[key] for key in loaded.keys()}
image_folder_path = os.path.join(target_dir, "images")
views = load_images(image_folder_path)
new_processed_data = process_predictions_for_visualization(
predictions, views, high_level_config, filter_black_bg, filter_white_bg
)
try:
depth_view_idx = int(depth_view_selector.split()[1]) - 1 if depth_view_selector else 0
except:
depth_view_idx = 0
try:
normal_view_idx = int(normal_view_selector.split()[1]) - 1 if normal_view_selector else 0
except:
normal_view_idx = 0
try:
measure_view_idx = int(measure_view_selector.split()[1]) - 1 if measure_view_selector else 0
except:
measure_view_idx = 0
depth_vis = update_depth_view(new_processed_data, depth_view_idx)
normal_vis = update_normal_view(new_processed_data, normal_view_idx)
measure_img, _ = update_measure_view(new_processed_data, measure_view_idx)
return new_processed_data, depth_vis, normal_vis, measure_img, []
except Exception as e:
print(f"更新视图失败: {e}")
return processed_data, None, None, None, []
# ============================================================================
# 示例场景
# ============================================================================
def get_scene_info(examples_dir):
"""Get information about scenes in the examples directory"""
import glob
scenes = []
if not os.path.exists(examples_dir):
return scenes
for scene_folder in sorted(os.listdir(examples_dir)):
scene_path = os.path.join(examples_dir, scene_folder)
if os.path.isdir(scene_path):
image_extensions = ["*.jpg", "*.jpeg", "*.png", "*.bmp", "*.tiff", "*.tif"]
image_files = []
for ext in image_extensions:
image_files.extend(glob.glob(os.path.join(scene_path, ext)))
image_files.extend(glob.glob(os.path.join(scene_path, ext.upper())))
if image_files:
image_files = sorted(image_files)
first_image = image_files[0]
num_images = len(image_files)
scenes.append(
{
"name": scene_folder,
"path": scene_path,
"thumbnail": first_image,
"num_images": num_images,
"image_files": image_files,
}
)
return scenes
def load_example_scene(scene_name, examples_dir="examples"):
"""Load a scene from examples directory"""
scenes = get_scene_info(examples_dir)
selected_scene = None
for scene in scenes:
if scene["name"] == scene_name:
selected_scene = scene
break
if selected_scene is None:
return None, None, None, None, "场景未找到"
target_dir, image_paths = handle_uploads(None, selected_scene["image_files"])
return (
None,
None,
target_dir,
image_paths,
f"已加载场景 '{scene_name}' ({selected_scene['num_images']} 张图像)。点击「重建」开始 3D 处理。",
)
# ============================================================================
# Gradio UI
# ============================================================================
theme = get_gradio_theme()
# 自定义CSS防止UI抖动
CUSTOM_CSS = GRADIO_CSS + """
/* 防止组件撑开布局 */
.gradio-container {
max-width: 100% !important;
}
/* 固定Gallery高度 */
.gallery-container {
max-height: 350px !important;
overflow-y: auto !important;
}
/* 固定File组件高度 */
.file-preview {
max-height: 200px !important;
overflow-y: auto !important;
}
/* 固定Video组件高度 */
.video-container {
max-height: 300px !important;
}
/* 防止Textbox无限扩展 */
.textbox-container {
max-height: 100px !important;
}
/* 保持Tabs内容区域稳定 */
.tab-content {
min-height: 550px !important;
}
"""
with gr.Blocks(theme=theme, css=CUSTOM_CSS, title="MapAnything V8 - 3D重建与物体分割") as demo:
is_example = gr.Textbox(label="is_example", visible=False, value="None")
processed_data_state = gr.State(value=None)
measure_points_state = gr.State(value=[])
# 顶部标题
gr.HTML("""
<div style="text-align: center; margin: 20px 0;">
<h2 style="color: #1976D2; margin-bottom: 10px;">MapAnything V8 - 3D重建与物体分割</h2>
<p style="color: #666; font-size: 16px;">基于DBSCAN聚类的智能物体识别 | 多视图融合 | 自适应参数调整</p>
</div>
""")
target_dir_output = gr.Textbox(label="Target Dir", visible=False, value="None")
with gr.Row(equal_height=False):
# 左侧:输入区域
with gr.Column(scale=1, min_width=300):
gr.Markdown("### 📤 输入")
with gr.Tabs():
with gr.Tab("📷 图片"):
input_images = gr.File(
file_count="multiple",
label="上传多张图片(推荐3-10张)",
interactive=True,
height=200
)
with gr.Tab("🎥 视频"):
input_video = gr.Video(
label="上传视频",
interactive=True,
height=300
)
s_time_interval = gr.Slider(
minimum=0.1, maximum=5.0, value=1.0, step=0.1,
label="帧采样间隔(秒)", interactive=True
)
image_gallery = gr.Gallery(
label="图片预览", columns=3, height=350,
show_download_button=True, object_fit="contain", preview=True
)
with gr.Row():
submit_btn = gr.Button("🚀 开始重建", variant="primary", scale=2)
clear_btn = gr.ClearButton(
[input_video, input_images, target_dir_output, image_gallery],
value="🗑️ 清空", scale=1
)
# 右侧:输出区域
with gr.Column(scale=2, min_width=600):
gr.Markdown("### 🎯 输出")
with gr.Tabs():
with gr.Tab("🏗️ 原始3D"):
reconstruction_output = gr.Model3D(
height=550, zoom_speed=0.5, pan_speed=0.5,
clear_color=[0.0, 0.0, 0.0, 0.0]
)
with gr.Tab("🎨 分割3D"):
segmented_output = gr.Model3D(
height=550, zoom_speed=0.5, pan_speed=0.5,
clear_color=[0.0, 0.0, 0.0, 0.0]
)
with gr.Tab("📊 深度图"):
with gr.Row(elem_classes=["navigation-row"]):
prev_depth_btn = gr.Button("◀", size="sm", scale=1)
depth_view_selector = gr.Dropdown(
choices=["View 1"], value="View 1",
label="视图", scale=3, interactive=True
)
next_depth_btn = gr.Button("▶", size="sm", scale=1)
depth_map = gr.Image(
type="numpy", label="", format="png", interactive=False,
height=500
)
with gr.Tab("🧭 法线图"):
with gr.Row(elem_classes=["navigation-row"]):
prev_normal_btn = gr.Button("◀", size="sm", scale=1)
normal_view_selector = gr.Dropdown(
choices=["View 1"], value="View 1",
label="视图", scale=3, interactive=True
)
next_normal_btn = gr.Button("▶", size="sm", scale=1)
normal_map = gr.Image(
type="numpy", label="", format="png", interactive=False,
height=500
)
with gr.Tab("📏 测量"):
gr.Markdown("**点击图片两次进行距离测量**")
with gr.Row(elem_classes=["navigation-row"]):
prev_measure_btn = gr.Button("◀", size="sm", scale=1)
measure_view_selector = gr.Dropdown(
choices=["View 1"], value="View 1",
label="视图", scale=3, interactive=True
)
next_measure_btn = gr.Button("▶", size="sm", scale=1)
measure_image = gr.Image(
type="numpy", show_label=False,
format="webp", interactive=False, sources=[],
height=500
)
measure_text = gr.Markdown("")
log_output = gr.Textbox(
value="📌 请上传图片或视频,然后点击「开始重建」",
label="状态信息",
interactive=False,
lines=1,
max_lines=1
)
# 高级选项(可折叠)
with gr.Accordion("⚙️ 高级选项", open=False):
with gr.Row(equal_height=False):
with gr.Column(scale=1, min_width=300):
gr.Markdown("#### 可视化参数")
frame_filter = gr.Dropdown(
choices=["All"], value="All", label="显示帧"
)
conf_thres = gr.Slider(
minimum=0, maximum=100, value=0, step=0.1,
label="置信度阈值(百分位)"
)
show_cam = gr.Checkbox(label="显示相机", value=True)
show_mesh = gr.Checkbox(label="显示网格", value=True)
filter_black_bg = gr.Checkbox(label="过滤黑色背景", value=False)
filter_white_bg = gr.Checkbox(label="过滤白色背景", value=False)
with gr.Column(scale=1, min_width=300):
gr.Markdown("#### 重建参数")
apply_mask_checkbox = gr.Checkbox(
label="应用深度掩码", value=True
)
gr.Markdown("#### 分割参数")
enable_segmentation = gr.Checkbox(
label="启用语义分割", value=False
)
use_sam_checkbox = gr.Checkbox(
label="使用SAM精确分割", value=True
)
text_prompt = gr.Textbox(
value=DEFAULT_TEXT_PROMPT,
label="检测物体(用 . 分隔)",
placeholder="例如: chair . table . sofa",
lines=2,
max_lines=2
)
with gr.Row():
detect_all_btn = gr.Button("🔍 检测所有", size="sm")
restore_default_btn = gr.Button("↻ 默认", size="sm")
# 示例场景(可折叠)
with gr.Accordion("🖼️ 示例场景", open=False):
scenes = get_scene_info("examples")
if scenes:
for i in range(0, len(scenes), 4):
with gr.Row(equal_height=True):
for j in range(4):
scene_idx = i + j
if scene_idx < len(scenes):
scene = scenes[scene_idx]
with gr.Column(scale=1, min_width=150):
scene_img = gr.Image(
value=scene["thumbnail"],
height=150,
interactive=False,
show_label=False,
sources=[],
container=False
)
gr.Markdown(
f"**{scene['name']}** ({scene['num_images']}张)",
elem_classes=["text-center"]
)
scene_img.select(
fn=lambda name=scene["name"]: load_example_scene(name),
outputs=[
reconstruction_output, segmented_output,
target_dir_output, image_gallery, log_output
]
)
# === 事件绑定 ===
# 分割选项按钮
detect_all_btn.click(
fn=lambda: COMMON_OBJECTS_PROMPT,
outputs=[text_prompt]
)
restore_default_btn.click(
fn=lambda: DEFAULT_TEXT_PROMPT,
outputs=[text_prompt]
)
# 上传文件自动更新
input_video.change(
fn=update_gallery_on_upload,
inputs=[input_video, input_images, s_time_interval],
outputs=[reconstruction_output, segmented_output, target_dir_output, image_gallery, log_output]
)
input_images.change(
fn=update_gallery_on_upload,
inputs=[input_video, input_images, s_time_interval],
outputs=[reconstruction_output, segmented_output, target_dir_output, image_gallery, log_output]
)
# 重建按钮
submit_btn.click(
fn=clear_fields,
outputs=[reconstruction_output, segmented_output]
).then(
fn=update_log,
outputs=[log_output]
).then(
fn=gradio_demo,
inputs=[
target_dir_output, frame_filter, show_cam,
filter_black_bg, filter_white_bg, conf_thres,
apply_mask_checkbox, show_mesh,
enable_segmentation, text_prompt, use_sam_checkbox
],
outputs=[
reconstruction_output, segmented_output, log_output, frame_filter,
processed_data_state, depth_map, normal_map, measure_image,
measure_text, depth_view_selector, normal_view_selector, measure_view_selector
]
).then(
fn=lambda: "False",
outputs=[is_example]
)
# 清空按钮
clear_btn.add([reconstruction_output, segmented_output, log_output])
# 可视化参数实时更新
for component in [frame_filter, show_cam, conf_thres, show_mesh]:
component.change(
fn=update_visualization,
inputs=[
target_dir_output, frame_filter, show_cam, is_example,
conf_thres, filter_black_bg, filter_white_bg, show_mesh
],
outputs=[reconstruction_output, log_output]
)
# 背景过滤器更新所有视图
for bg_filter in [filter_black_bg, filter_white_bg]:
bg_filter.change(
fn=update_all_views_on_filter_change,
inputs=[
target_dir_output, filter_black_bg, filter_white_bg, processed_data_state,
depth_view_selector, normal_view_selector, measure_view_selector
],
outputs=[processed_data_state, depth_map, normal_map, measure_image, measure_points_state]
)
# 深度图导航
prev_depth_btn.click(
fn=lambda pd, cs: navigate_depth_view(pd, cs, -1),
inputs=[processed_data_state, depth_view_selector],
outputs=[depth_view_selector, depth_map]
)
next_depth_btn.click(
fn=lambda pd, cs: navigate_depth_view(pd, cs, 1),
inputs=[processed_data_state, depth_view_selector],
outputs=[depth_view_selector, depth_map]
)
depth_view_selector.change(
fn=lambda pd, sv: update_depth_view(pd, int(sv.split()[1]) - 1) if sv else None,
inputs=[processed_data_state, depth_view_selector],
outputs=[depth_map]
)
# 法线图导航
prev_normal_btn.click(
fn=lambda pd, cs: navigate_normal_view(pd, cs, -1),
inputs=[processed_data_state, normal_view_selector],
outputs=[normal_view_selector, normal_map]
)
next_normal_btn.click(
fn=lambda pd, cs: navigate_normal_view(pd, cs, 1),
inputs=[processed_data_state, normal_view_selector],
outputs=[normal_view_selector, normal_map]
)
normal_view_selector.change(
fn=lambda pd, sv: update_normal_view(pd, int(sv.split()[1]) - 1) if sv else None,
inputs=[processed_data_state, normal_view_selector],
outputs=[normal_map]
)
# 测量功能
measure_image.select(
fn=measure,
inputs=[processed_data_state, measure_points_state, measure_view_selector],
outputs=[measure_image, measure_points_state, measure_text]
)
prev_measure_btn.click(
fn=lambda pd, cs: navigate_measure_view(pd, cs, -1),
inputs=[processed_data_state, measure_view_selector],
outputs=[measure_view_selector, measure_image, measure_points_state]
)
next_measure_btn.click(
fn=lambda pd, cs: navigate_measure_view(pd, cs, 1),
inputs=[processed_data_state, measure_view_selector],
outputs=[measure_view_selector, measure_image, measure_points_state]
)
measure_view_selector.change(
fn=lambda pd, sv: update_measure_view(pd, int(sv.split()[1]) - 1) if sv else (None, []),
inputs=[processed_data_state, measure_view_selector],
outputs=[measure_image, measure_points_state]
)
# 启动信息
print("\n" + "="*60)
print("🚀 MapAnything V8 - 3D重建与物体分割")
print("="*60)
print("📊 核心技术: 自适应DBSCAN聚类 + 多视图融合")
print(f"🔧 质量控制: 置信度≥{MIN_DETECTION_CONFIDENCE} | 面积≥{MIN_MASK_AREA}px")
print(f"🎯 聚类半径: 沙发{DBSCAN_EPS_CONFIG['sofa']}m | 桌子{DBSCAN_EPS_CONFIG['table']}m | 窗户{DBSCAN_EPS_CONFIG['window']}m | 默认{DBSCAN_EPS_CONFIG['default']}m")
print("="*60 + "\n")
demo.queue(max_size=20).launch(show_error=True, share=True, ssr_mode=False)
|