Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| from __future__ import annotations | |
| import functools | |
| import os | |
| import pathlib | |
| import shlex | |
| import subprocess | |
| import sys | |
| import tarfile | |
| import gradio as gr | |
| import huggingface_hub | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| if os.getenv('SYSTEM') == 'spaces': | |
| with open('patch') as f: | |
| subprocess.run(shlex.split('patch -p1'), cwd='gan-control', stdin=f) | |
| sys.path.insert(0, 'gan-control/src') | |
| from gan_control.inference.controller import Controller | |
| TITLE = 'GAN-Control' | |
| DESCRIPTION = 'https://github.com/amazon-research/gan-control' | |
| def download_models() -> None: | |
| model_dir = pathlib.Path('controller_age015id025exp02hai04ori02gam15') | |
| if not model_dir.exists(): | |
| path = huggingface_hub.hf_hub_download( | |
| 'public-data/gan-control', | |
| 'controller_age015id025exp02hai04ori02gam15.tar.gz') | |
| with tarfile.open(path) as f: | |
| f.extractall() | |
| def run( | |
| seed: int, | |
| truncation: float, | |
| yaw: int, | |
| pitch: int, | |
| age: int, | |
| hair_color_r: float, | |
| hair_color_g: float, | |
| hair_color_b: float, | |
| nrows: int, | |
| ncols: int, | |
| controller: Controller, | |
| device: torch.device, | |
| ) -> PIL.Image.Image: | |
| seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
| batch_size = nrows * ncols | |
| latent_size = controller.config.model_config['latent_size'] | |
| latent = torch.from_numpy( | |
| np.random.RandomState(seed).randn(batch_size, | |
| latent_size)).float().to(device) | |
| initial_image_tensors, initial_latent_z, initial_latent_w = controller.gen_batch( | |
| latent=latent, truncation=truncation) | |
| res0 = controller.make_resized_grid_image(initial_image_tensors, | |
| nrow=ncols) | |
| pose_control = torch.tensor([[yaw, pitch, 0]], dtype=torch.float32) | |
| image_tensors, _, modified_latent_w = controller.gen_batch_by_controls( | |
| latent=initial_latent_w, | |
| input_is_latent=True, | |
| orientation=pose_control) | |
| res1 = controller.make_resized_grid_image(image_tensors, nrow=ncols) | |
| age_control = torch.tensor([[age]], dtype=torch.float32) | |
| image_tensors, _, modified_latent_w = controller.gen_batch_by_controls( | |
| latent=initial_latent_w, input_is_latent=True, age=age_control) | |
| res2 = controller.make_resized_grid_image(image_tensors, nrow=ncols) | |
| hair_color = torch.tensor([[hair_color_r, hair_color_g, hair_color_b]], | |
| dtype=torch.float32) / 255 | |
| hair_color = torch.clamp(hair_color, 0, 1) | |
| image_tensors, _, modified_latent_w = controller.gen_batch_by_controls( | |
| latent=initial_latent_w, input_is_latent=True, hair=hair_color) | |
| res3 = controller.make_resized_grid_image(image_tensors, nrow=ncols) | |
| return res0, res1, res2, res3 | |
| download_models() | |
| device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
| path = 'controller_age015id025exp02hai04ori02gam15/' | |
| controller = Controller(path, device) | |
| fn = functools.partial(run, controller=controller, device=device) | |
| gr.Interface( | |
| fn=fn, | |
| inputs=[ | |
| gr.Slider(label='Seed', minimum=0, maximum=1000000, step=1, value=0), | |
| gr.Slider(label='Truncation', | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.7), | |
| gr.Slider(label='Yaw', minimum=-90, maximum=90, step=1, value=30), | |
| gr.Slider(label='Pitch', minimum=-90, maximum=90, step=1, value=0), | |
| gr.Slider(label='Age', minimum=15, maximum=75, step=1, value=75), | |
| gr.Slider(label='Hair Color (R)', | |
| minimum=0, | |
| maximum=255, | |
| step=1, | |
| value=186), | |
| gr.Slider(label='Hair Color (G)', | |
| minimum=0, | |
| maximum=255, | |
| step=1, | |
| value=158), | |
| gr.Slider(label='Hair Color (B)', | |
| minimum=0, | |
| maximum=255, | |
| step=1, | |
| value=92), | |
| gr.Slider(label='Number of Rows', | |
| minimum=1, | |
| maximum=3, | |
| step=1, | |
| value=1), | |
| gr.Slider(label='Number of Columns', | |
| minimum=1, | |
| maximum=5, | |
| step=1, | |
| value=5), | |
| ], | |
| outputs=[ | |
| gr.Image(label='Generated Image', type='pil'), | |
| gr.Image(label='Head Pose Controlled', type='pil'), | |
| gr.Image(label='Age Controlled', type='pil'), | |
| gr.Image(label='Hair Color Controlled', type='pil'), | |
| ], | |
| title=TITLE, | |
| description=DESCRIPTION, | |
| ).queue(max_size=10).launch() | |