Spaces:
Paused
Paused
| import models | |
| import constants | |
| from langchain_experimental.text_splitter import SemanticChunker | |
| from langchain_qdrant import QdrantVectorStore, Qdrant | |
| from langchain_community.document_loaders import PyPDFLoader | |
| from qdrant_client.http.models import VectorParams | |
| #qdrant = QdrantVectorStore.from_existing_collection( | |
| # embedding=models.basic_embeddings, | |
| # collection_name="kai_test_documents", | |
| # url=constants.QDRANT_ENDPOINT, | |
| #) | |
| #gather kai's docs | |
| filepaths = ["./test_docs/Employee Statistics FINAL.pdf","./test_docs/Employer Statistics FINAL.pdf"] | |
| all_documents = [] | |
| for file in filepaths: | |
| loader = PyPDFLoader(file) | |
| documents = loader.load() | |
| for doc in documents: | |
| doc.metadata = { | |
| "source": file, | |
| "tag": "employee" if "employee" in file.lower() else "employer" | |
| } | |
| all_documents.extend(documents) | |
| #chunk them | |
| semantic_split_docs = models.semanticChunker.split_documents(all_documents) | |
| #add them to the existing qdrant client | |
| collection_name = "kai_test_docs" | |
| collections = models.qdrant_client.get_collections() | |
| collection_names = [collection.name for collection in collections.collections] | |
| # If the collection does not exist, create it | |
| if collection_name not in collection_names: | |
| models.qdrant_client.create_collection( | |
| collection_name=collection_name, | |
| vectors_config=VectorParams(size=1536, distance="Cosine") | |
| ) | |
| qdrant_vector_store = Qdrant( | |
| client=models.qdrant_client, | |
| collection_name=collection_name, | |
| embeddings=models.te3_small | |
| ) | |
| qdrant_vector_store.add_documents(semantic_split_docs) | |
| collection_info = models.qdrant_client.get_collection(collection_name) | |
| print(f"Number of points in collection: {collection_info.points_count}") |