Spaces:
Paused
Paused
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| from qdrant_client import QdrantClient | |
| from langchain_openai.embeddings import OpenAIEmbeddings | |
| from langchain_core.prompts import ChatPromptTemplate | |
| from langchain_core.globals import set_llm_cache | |
| from langchain_openai import ChatOpenAI | |
| from langchain_core.caches import InMemoryCache | |
| from operator import itemgetter | |
| from langchain_core.runnables.passthrough import RunnablePassthrough | |
| from langchain_qdrant import QdrantVectorStore, Qdrant | |
| import uuid | |
| import chainlit as cl | |
| import os | |
| # chat_model = ChatOpenAI(model="gpt-4o-mini") | |
| # te3_small = OpenAIEmbeddings(model="text-embedding-3-small") | |
| # set_llm_cache(InMemoryCache()) | |
| # text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=100) | |
| # rag_system_prompt_template = """\ | |
| # You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. | |
| # """ | |
| # rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},] | |
| # rag_user_prompt_template = """\ | |
| # Question: | |
| # {question} | |
| # Context: | |
| # {context} | |
| # """ | |
| # chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]) | |
| async def on_chat_start(): | |
| # qdrant_client = QdrantClient(url=os.environ["QDRANT_ENDPOINT"], api_key=os.environ["QDRANT_API_KEY"]) | |
| # qdrant_store = Qdrant( | |
| # client=qdrant_client, | |
| # collection_name="kai_test_docs", | |
| # embeddings=te3_small | |
| # ) | |
| # retriever = qdrant_store.as_retriever() | |
| # global retrieval_augmented_qa_chain | |
| # retrieval_augmented_qa_chain = ( | |
| # {"context": itemgetter("question") | retriever, "question": itemgetter("question")} | |
| # | RunnablePassthrough.assign(context=itemgetter("context")) | |
| # | chat_prompt | |
| # | chat_model | |
| # ) | |
| await cl.Message(content="YAsk away!").send() | |
| def rename(orig_author: str): | |
| return "AI Assistant" | |
| async def main(message: cl.Message): | |
| # response = retrieval_augmented_qa_chain.invoke({"question": message.content}) | |
| # await cl.Message(content=response.content).send() | |
| await cl.Message(content="Message response").send() |