Spaces:
Running
Running
| import argparse | |
| import os | |
| import sys | |
| import json | |
| from multiprocessing import cpu_count | |
| import torch | |
| version_config_list = [ | |
| "v1/32000.json", | |
| "v1/40000.json", | |
| "v1/48000.json", | |
| "v2/48000.json", | |
| "v2/32000.json", | |
| ] | |
| def singleton_variable(func): | |
| def wrapper(*args, **kwargs): | |
| if not wrapper.instance: | |
| wrapper.instance = func(*args, **kwargs) | |
| return wrapper.instance | |
| wrapper.instance = None | |
| return wrapper | |
| class Config: | |
| def __init__(self): | |
| self.device = "cuda:0" | |
| self.is_half = True | |
| self.use_jit = False | |
| self.n_cpu = 0 | |
| self.gpu_name = None | |
| self.json_config = self.load_config_json() | |
| self.gpu_mem = None | |
| self.instead = "" | |
| self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | |
| def load_config_json() -> dict: | |
| d = {} | |
| for config_file in version_config_list: | |
| with open(f"rvc/configs/{config_file}", "r") as f: | |
| d[config_file] = json.load(f) | |
| return d | |
| def has_mps() -> bool: | |
| if not torch.backends.mps.is_available(): | |
| return False | |
| try: | |
| torch.zeros(1).to(torch.device("mps")) | |
| return True | |
| except Exception: | |
| return False | |
| def has_xpu() -> bool: | |
| if hasattr(torch, "xpu") and torch.xpu.is_available(): | |
| return True | |
| else: | |
| return False | |
| def use_fp32_config(self): | |
| for config_file in version_config_list: | |
| self.json_config[config_file]["train"]["fp16_run"] = False | |
| with open(f"rvc/configs/{config_file}", "r") as f: | |
| strr = f.read().replace("true", "false") | |
| with open(f"rvc/configs/{config_file}", "w") as f: | |
| f.write(strr) | |
| with open("rvc/train/preprocess/preprocess.py", "r") as f: | |
| strr = f.read().replace("3.7", "3.0") | |
| with open("rvc/train/preprocess/preprocess.py", "w") as f: | |
| f.write(strr) | |
| def device_config(self) -> tuple: | |
| if torch.cuda.is_available(): | |
| if self.has_xpu(): | |
| self.device = self.instead = "xpu:0" | |
| self.is_half = True | |
| i_device = int(self.device.split(":")[-1]) | |
| self.gpu_name = torch.cuda.get_device_name(i_device) | |
| if ( | |
| ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | |
| or "P40" in self.gpu_name.upper() | |
| or "P10" in self.gpu_name.upper() | |
| or "1060" in self.gpu_name | |
| or "1070" in self.gpu_name | |
| or "1080" in self.gpu_name | |
| ): | |
| self.is_half = False | |
| self.use_fp32_config() | |
| self.gpu_mem = int( | |
| torch.cuda.get_device_properties(i_device).total_memory | |
| / 1024 | |
| / 1024 | |
| / 1024 | |
| + 0.4 | |
| ) | |
| if self.gpu_mem <= 4: | |
| with open("rvc/train/preprocess/preprocess.py", "r") as f: | |
| strr = f.read().replace("3.7", "3.0") | |
| with open("rvc/train/preprocess/preprocess.py", "w") as f: | |
| f.write(strr) | |
| elif self.has_mps(): | |
| print("No supported Nvidia GPU found") | |
| self.device = self.instead = "mps" | |
| self.is_half = False | |
| self.use_fp32_config() | |
| else: | |
| print("No supported Nvidia GPU found") | |
| self.device = self.instead = "cpu" | |
| self.is_half = False | |
| self.use_fp32_config() | |
| if self.n_cpu == 0: | |
| self.n_cpu = cpu_count() | |
| if self.is_half: | |
| x_pad = 3 | |
| x_query = 10 | |
| x_center = 60 | |
| x_max = 65 | |
| else: | |
| x_pad = 1 | |
| x_query = 6 | |
| x_center = 38 | |
| x_max = 41 | |
| if self.gpu_mem is not None and self.gpu_mem <= 4: | |
| x_pad = 1 | |
| x_query = 5 | |
| x_center = 30 | |
| x_max = 32 | |
| return x_pad, x_query, x_center, x_max | |
| def max_vram_gpu(gpu): | |
| if torch.cuda.is_available(): | |
| gpu_properties = torch.cuda.get_device_properties(gpu) | |
| total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024) | |
| return total_memory_gb | |
| else: | |
| return "0" | |
| def get_gpu_info(): | |
| ngpu = torch.cuda.device_count() | |
| gpu_infos = [] | |
| if torch.cuda.is_available() or ngpu != 0: | |
| for i in range(ngpu): | |
| gpu_name = torch.cuda.get_device_name(i) | |
| mem = int( | |
| torch.cuda.get_device_properties(i).total_memory / 1024 / 1024 / 1024 | |
| + 0.4 | |
| ) | |
| gpu_infos.append("%s: %s %s GB" % (i, gpu_name, mem)) | |
| if len(gpu_infos) > 0: | |
| gpu_info = "\n".join(gpu_infos) | |
| else: | |
| gpu_info = "Unfortunately, there is no compatible GPU available to support your training." | |
| return gpu_info | |