Spaces:
Sleeping
Sleeping
Rename simple_sentiment.py to summarizer_tool.py
Browse files- simple_sentiment.py +0 -98
- summarizer_tool.py +191 -0
simple_sentiment.py
DELETED
|
@@ -1,98 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
from smolagents import Tool
|
| 4 |
-
|
| 5 |
-
class SimpleSentimentTool(Tool):
|
| 6 |
-
name = "sentiment_analysis"
|
| 7 |
-
description = "This tool analyzes the sentiment of a given text."
|
| 8 |
-
|
| 9 |
-
inputs = {
|
| 10 |
-
"text": {
|
| 11 |
-
"type": "string",
|
| 12 |
-
"description": "The text to analyze for sentiment"
|
| 13 |
-
},
|
| 14 |
-
"model_key": {
|
| 15 |
-
"type": "string",
|
| 16 |
-
"description": "The model to use for sentiment analysis",
|
| 17 |
-
"default": "oliverguhr/german-sentiment-bert",
|
| 18 |
-
"nullable": True
|
| 19 |
-
}
|
| 20 |
-
}
|
| 21 |
-
# Use a standard authorized type
|
| 22 |
-
output_type = "string"
|
| 23 |
-
|
| 24 |
-
# Available sentiment analysis models
|
| 25 |
-
models = {
|
| 26 |
-
"multilingual": "nlptown/bert-base-multilingual-uncased-sentiment",
|
| 27 |
-
"deberta": "microsoft/deberta-xlarge-mnli",
|
| 28 |
-
"distilbert": "distilbert-base-uncased-finetuned-sst-2-english",
|
| 29 |
-
"mobilebert": "lordtt13/emo-mobilebert",
|
| 30 |
-
"reviews": "juliensimon/reviews-sentiment-analysis",
|
| 31 |
-
"sbc": "sbcBI/sentiment_analysis_model",
|
| 32 |
-
"german": "oliverguhr/german-sentiment-bert"
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
def __init__(self, default_model="distilbert", preload=False):
|
| 36 |
-
"""Initialize with a default model.
|
| 37 |
-
|
| 38 |
-
Args:
|
| 39 |
-
default_model: The default model to use if no model is specified
|
| 40 |
-
preload: Whether to preload the default model at initialization
|
| 41 |
-
"""
|
| 42 |
-
super().__init__()
|
| 43 |
-
self.default_model = default_model
|
| 44 |
-
self._classifiers = {}
|
| 45 |
-
|
| 46 |
-
# Optionally preload the default model
|
| 47 |
-
if preload:
|
| 48 |
-
try:
|
| 49 |
-
self._get_classifier(self.models[default_model])
|
| 50 |
-
except Exception as e:
|
| 51 |
-
print(f"Warning: Failed to preload model: {str(e)}")
|
| 52 |
-
|
| 53 |
-
def _get_classifier(self, model_id):
|
| 54 |
-
"""Get or create a classifier for the given model ID."""
|
| 55 |
-
if model_id not in self._classifiers:
|
| 56 |
-
try:
|
| 57 |
-
print(f"Loading model: {model_id}")
|
| 58 |
-
self._classifiers[model_id] = pipeline(
|
| 59 |
-
"text-classification",
|
| 60 |
-
model=model_id,
|
| 61 |
-
top_k=None # Return all scores
|
| 62 |
-
)
|
| 63 |
-
except Exception as e:
|
| 64 |
-
print(f"Error loading model {model_id}: {str(e)}")
|
| 65 |
-
# Fall back to distilbert if available
|
| 66 |
-
if model_id != self.models["distilbert"]:
|
| 67 |
-
print("Falling back to distilbert model...")
|
| 68 |
-
return self._get_classifier(self.models["distilbert"])
|
| 69 |
-
else:
|
| 70 |
-
# Last resort - if even distilbert fails
|
| 71 |
-
print("Critical error: Could not load default model")
|
| 72 |
-
raise RuntimeError(f"Failed to load any sentiment model: {str(e)}")
|
| 73 |
-
return self._classifiers[model_id]
|
| 74 |
-
|
| 75 |
-
def forward(self, text: str, model_key="oliverguhr/german-sentiment-bert"):
|
| 76 |
-
"""Process input text and return sentiment predictions."""
|
| 77 |
-
try:
|
| 78 |
-
# Determine which model to use
|
| 79 |
-
model_key = model_key or self.default_model
|
| 80 |
-
model_id = self.models.get(model_key, self.models[self.default_model])
|
| 81 |
-
|
| 82 |
-
# Get the classifier
|
| 83 |
-
classifier = self._get_classifier(model_id)
|
| 84 |
-
|
| 85 |
-
# Get predictions
|
| 86 |
-
prediction = classifier(text)
|
| 87 |
-
|
| 88 |
-
# Format as a dictionary
|
| 89 |
-
result = {}
|
| 90 |
-
for item in prediction[0]:
|
| 91 |
-
result[item['label']] = float(item['score'])
|
| 92 |
-
|
| 93 |
-
# Convert to JSON string for output
|
| 94 |
-
import json
|
| 95 |
-
return json.dumps(result, indent=2)
|
| 96 |
-
except Exception as e:
|
| 97 |
-
print(f"Error in sentiment analysis: {str(e)}")
|
| 98 |
-
return json.dumps({"error": str(e)}, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
summarizer_tool.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
from typing import Dict, Any, Optional
|
| 3 |
+
import warnings
|
| 4 |
+
|
| 5 |
+
# Suppress unnecessary warnings
|
| 6 |
+
warnings.filterwarnings("ignore")
|
| 7 |
+
|
| 8 |
+
class TextSummarizerTool(Tool):
|
| 9 |
+
name = "text_summarizer"
|
| 10 |
+
description = """
|
| 11 |
+
Summarizes text using various summarization methods and models.
|
| 12 |
+
This tool can generate concise summaries of longer texts while preserving key information.
|
| 13 |
+
It supports different summarization models and customizable parameters.
|
| 14 |
+
"""
|
| 15 |
+
inputs = {
|
| 16 |
+
"text": {
|
| 17 |
+
"type": "string",
|
| 18 |
+
"description": "The text to be summarized",
|
| 19 |
+
},
|
| 20 |
+
"model": {
|
| 21 |
+
"type": "string",
|
| 22 |
+
"description": "Summarization model to use (default: 'facebook/bart-large-cnn')",
|
| 23 |
+
"nullable": True
|
| 24 |
+
},
|
| 25 |
+
"max_length": {
|
| 26 |
+
"type": "integer",
|
| 27 |
+
"description": "Maximum length of the summary in tokens (default: 130)",
|
| 28 |
+
"nullable": True
|
| 29 |
+
},
|
| 30 |
+
"min_length": {
|
| 31 |
+
"type": "integer",
|
| 32 |
+
"description": "Minimum length of the summary in tokens (default: 30)",
|
| 33 |
+
"nullable": True
|
| 34 |
+
},
|
| 35 |
+
"style": {
|
| 36 |
+
"type": "string",
|
| 37 |
+
"description": "Style of summary: 'concise', 'detailed', or 'bullet_points' (default: 'concise')",
|
| 38 |
+
"nullable": True
|
| 39 |
+
}
|
| 40 |
+
}
|
| 41 |
+
output_type = "string"
|
| 42 |
+
|
| 43 |
+
def __init__(self):
|
| 44 |
+
"""Initialize the Text Summarizer Tool with default settings."""
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.default_model = "facebook/bart-large-cnn"
|
| 47 |
+
self.available_models = {
|
| 48 |
+
"facebook/bart-large-cnn": "BART CNN (good for news)",
|
| 49 |
+
"sshleifer/distilbart-cnn-12-6": "DistilBART (faster, smaller)",
|
| 50 |
+
"google/pegasus-xsum": "Pegasus (extreme summarization)",
|
| 51 |
+
"facebook/bart-large-xsum": "BART XSum (very concise)",
|
| 52 |
+
"philschmid/bart-large-cnn-samsum": "BART SamSum (good for conversations)"
|
| 53 |
+
}
|
| 54 |
+
# Pipeline will be lazily loaded
|
| 55 |
+
self._pipeline = None
|
| 56 |
+
|
| 57 |
+
def _load_pipeline(self, model_name: str):
|
| 58 |
+
"""Load the summarization pipeline with the specified model."""
|
| 59 |
+
try:
|
| 60 |
+
from transformers import pipeline
|
| 61 |
+
import torch
|
| 62 |
+
|
| 63 |
+
# Try to detect if GPU is available
|
| 64 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 65 |
+
|
| 66 |
+
# Load the summarization pipeline
|
| 67 |
+
self._pipeline = pipeline(
|
| 68 |
+
"summarization",
|
| 69 |
+
model=model_name,
|
| 70 |
+
device=device
|
| 71 |
+
)
|
| 72 |
+
return True
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"Error loading model {model_name}: {str(e)}")
|
| 75 |
+
try:
|
| 76 |
+
# Fall back to default model
|
| 77 |
+
from transformers import pipeline
|
| 78 |
+
import torch
|
| 79 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 80 |
+
self._pipeline = pipeline(
|
| 81 |
+
"summarization",
|
| 82 |
+
model=self.default_model,
|
| 83 |
+
device=device
|
| 84 |
+
)
|
| 85 |
+
return True
|
| 86 |
+
except Exception as fallback_error:
|
| 87 |
+
print(f"Error loading fallback model: {str(fallback_error)}")
|
| 88 |
+
return False
|
| 89 |
+
|
| 90 |
+
def _format_as_bullets(self, summary: str) -> str:
|
| 91 |
+
"""Format a summary as bullet points."""
|
| 92 |
+
# Split the summary into sentences
|
| 93 |
+
import re
|
| 94 |
+
sentences = re.split(r'(?<=[.!?])\s+', summary)
|
| 95 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
| 96 |
+
|
| 97 |
+
# Format as bullet points
|
| 98 |
+
bullet_points = []
|
| 99 |
+
for sentence in sentences:
|
| 100 |
+
# Skip very short sentences that might be artifacts
|
| 101 |
+
if len(sentence) < 15:
|
| 102 |
+
continue
|
| 103 |
+
bullet_points.append(f"• {sentence}")
|
| 104 |
+
|
| 105 |
+
return "\n".join(bullet_points)
|
| 106 |
+
|
| 107 |
+
def forward(self, text: str, model: str = None, max_length: int = None, min_length: int = None, style: str = None) -> str:
|
| 108 |
+
"""
|
| 109 |
+
Summarize the input text.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
text: The text to summarize
|
| 113 |
+
model: Summarization model to use
|
| 114 |
+
max_length: Maximum summary length in tokens
|
| 115 |
+
min_length: Minimum summary length in tokens
|
| 116 |
+
style: Style of summary ('concise', 'detailed', or 'bullet_points')
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
Summarized text
|
| 120 |
+
"""
|
| 121 |
+
# Set default values if parameters are None
|
| 122 |
+
if model is None:
|
| 123 |
+
model = self.default_model
|
| 124 |
+
if max_length is None:
|
| 125 |
+
max_length = 130
|
| 126 |
+
if min_length is None:
|
| 127 |
+
min_length = 30
|
| 128 |
+
if style is None:
|
| 129 |
+
style = "concise"
|
| 130 |
+
|
| 131 |
+
# Validate model choice
|
| 132 |
+
if model not in self.available_models:
|
| 133 |
+
return f"Model '{model}' not recognized. Available models: {', '.join(self.available_models.keys())}"
|
| 134 |
+
|
| 135 |
+
# Load the model if not already loaded or if different from current
|
| 136 |
+
if self._pipeline is None or (hasattr(self._pipeline, 'model') and self._pipeline.model.name_or_path != model):
|
| 137 |
+
if not self._load_pipeline(model):
|
| 138 |
+
return "Failed to load summarization model. Please try a different model."
|
| 139 |
+
|
| 140 |
+
# Adjust parameters based on style
|
| 141 |
+
if style == "concise":
|
| 142 |
+
max_length = min(100, max_length)
|
| 143 |
+
min_length = min(30, min_length)
|
| 144 |
+
elif style == "detailed":
|
| 145 |
+
max_length = max(150, max_length)
|
| 146 |
+
min_length = max(50, min_length)
|
| 147 |
+
|
| 148 |
+
# Ensure text is not too short
|
| 149 |
+
if len(text.split()) < 20:
|
| 150 |
+
return "The input text is too short to summarize effectively."
|
| 151 |
+
|
| 152 |
+
# Perform summarization
|
| 153 |
+
try:
|
| 154 |
+
# Truncate very long inputs if needed (model dependent)
|
| 155 |
+
max_input_length = 1024 # Most models have limits around 1024-2048 tokens
|
| 156 |
+
words = text.split()
|
| 157 |
+
if len(words) > max_input_length:
|
| 158 |
+
text = " ".join(words[:max_input_length])
|
| 159 |
+
note = "\n\nNote: The input was truncated due to length limits."
|
| 160 |
+
else:
|
| 161 |
+
note = ""
|
| 162 |
+
|
| 163 |
+
summary = self._pipeline(
|
| 164 |
+
text,
|
| 165 |
+
max_length=max_length,
|
| 166 |
+
min_length=min_length,
|
| 167 |
+
do_sample=False
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
result = summary[0]['summary_text']
|
| 171 |
+
|
| 172 |
+
# Format the result based on style
|
| 173 |
+
if style == "bullet_points":
|
| 174 |
+
result = self._format_as_bullets(result)
|
| 175 |
+
|
| 176 |
+
# Add metadata
|
| 177 |
+
metadata = f"\n\nSummarized using: {self.available_models.get(model, model)}"
|
| 178 |
+
|
| 179 |
+
return result + metadata + note
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
return f"Error summarizing text: {str(e)}"
|
| 183 |
+
|
| 184 |
+
def get_available_models(self) -> Dict[str, str]:
|
| 185 |
+
"""Return the dictionary of available models with descriptions."""
|
| 186 |
+
return self.available_models
|
| 187 |
+
|
| 188 |
+
# Example usage:
|
| 189 |
+
# summarizer = TextSummarizerTool()
|
| 190 |
+
# result = summarizer("Long text goes here...", model="facebook/bart-large-cnn", style="bullet_points")
|
| 191 |
+
# print(result)
|