Spaces:
Sleeping
Sleeping
| """ | |
| Train script for a single file | |
| Need to set the TPU address first: | |
| export XRT_TPU_CONFIG="localservice;0;localhost:51011" | |
| """ | |
| import torch.multiprocessing as mp | |
| import threading | |
| import time | |
| import random | |
| import sys | |
| import argparse | |
| import gzip | |
| import json | |
| import logging | |
| import tqdm | |
| import torch | |
| from torch import nn | |
| from torch.utils.data import DataLoader | |
| import torch | |
| import torch_xla | |
| import torch_xla.core | |
| import torch_xla.core.functions | |
| import torch_xla.core.xla_model as xm | |
| import torch_xla.distributed.xla_multiprocessing as xmp | |
| import torch_xla.distributed.parallel_loader as pl | |
| import os | |
| from shutil import copyfile | |
| from transformers import ( | |
| AdamW, | |
| AutoModel, | |
| AutoTokenizer, | |
| get_linear_schedule_with_warmup, | |
| set_seed, | |
| ) | |
| class AutoModelForSentenceEmbedding(nn.Module): | |
| def __init__(self, model_name, tokenizer, normalize=True): | |
| super(AutoModelForSentenceEmbedding, self).__init__() | |
| self.model = AutoModel.from_pretrained(model_name) | |
| self.normalize = normalize | |
| self.tokenizer = tokenizer | |
| def forward(self, **kwargs): | |
| model_output = self.model(**kwargs) | |
| embeddings = self.mean_pooling(model_output, kwargs['attention_mask']) | |
| if self.normalize: | |
| embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) | |
| return embeddings | |
| def mean_pooling(self, model_output, attention_mask): | |
| token_embeddings = model_output[0] # First element of model_output contains all token embeddings | |
| input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| def save_pretrained(self, output_path): | |
| if xm.is_master_ordinal(): | |
| self.tokenizer.save_pretrained(output_path) | |
| self.model.config.save_pretrained(output_path) | |
| xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin")) | |
| def train_function(index, args, queue): | |
| tokenizer = AutoTokenizer.from_pretrained(args.model) | |
| model = AutoModelForSentenceEmbedding(args.model, tokenizer) | |
| ### Train Loop | |
| device = xm.xla_device() | |
| model = model.to(device) | |
| # Instantiate optimizer | |
| optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True) | |
| lr_scheduler = get_linear_schedule_with_warmup( | |
| optimizer=optimizer, | |
| num_warmup_steps=500, | |
| num_training_steps=args.steps, | |
| ) | |
| # Now we train the model | |
| cross_entropy_loss = nn.CrossEntropyLoss() | |
| max_grad_norm = 1 | |
| model.train() | |
| for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()): | |
| #### Get the batch data | |
| batch = queue.get() | |
| #print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch]))) | |
| if len(batch[0]) == 2: #(anchor, positive) | |
| text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") | |
| text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") | |
| ### Compute embeddings | |
| embeddings_a = model(**text1.to(device)) | |
| embeddings_b = model(**text2.to(device)) | |
| ### Gather all embedings | |
| embeddings_a = torch_xla.core.functions.all_gather(embeddings_a) | |
| embeddings_b = torch_xla.core.functions.all_gather(embeddings_b) | |
| ### Compute similarity scores 512 x 512 | |
| scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale | |
| ### Compute cross-entropy loss | |
| labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i] | |
| ## Symmetric loss as in CLIP | |
| loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2 | |
| else: #(anchor, positive, negative) | |
| text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") | |
| text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") | |
| text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length") | |
| embeddings_a = model(**text1.to(device)) | |
| embeddings_b1 = model(**text2.to(device)) | |
| embeddings_b2 = model(**text3.to(device)) | |
| embeddings_a = torch_xla.core.functions.all_gather(embeddings_a) | |
| embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1) | |
| embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2) | |
| embeddings_b = torch.cat([embeddings_b1, embeddings_b2]) | |
| ### Compute similarity scores 512 x 1024 | |
| scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale | |
| ### Compute cross-entropy loss | |
| labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i] | |
| ## One-way loss | |
| loss = cross_entropy_loss(scores, labels) | |
| # Backward pass | |
| optimizer.zero_grad() | |
| loss.backward() | |
| torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) | |
| xm.optimizer_step(optimizer, barrier=True) | |
| lr_scheduler.step() | |
| #Save model | |
| if (global_step+1) % args.save_steps == 0: | |
| output_path = os.path.join(args.output, str(global_step+1)) | |
| xm.master_print("save model: "+output_path) | |
| model.save_pretrained(output_path) | |
| output_path = os.path.join(args.output, "final") | |
| xm.master_print("save model final: "+ output_path) | |
| model.save_pretrained(output_path) | |
| def produce_data(args, queue, filepaths, dataset_indices): | |
| global_batch_size = args.batch_size*args.nprocs #Global batch size | |
| size_per_dataset = int(global_batch_size / args.datasets_per_batch) #How many datasets per batch | |
| num_same_dataset = int(size_per_dataset / args.batch_size) | |
| print("producer", "global_batch_size", global_batch_size) | |
| print("producer", "size_per_dataset", size_per_dataset) | |
| print("producer", "num_same_dataset", num_same_dataset) | |
| datasets = [] | |
| for filepath in filepaths: | |
| if "reddit_" in filepath: #Special dataset class for Reddit files | |
| data_obj = RedditDataset(filepath) | |
| else: | |
| data_obj = Dataset(filepath) | |
| datasets.append(iter(data_obj)) | |
| # Store if dataset is in a 2 col or 3 col format | |
| num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)} | |
| while True: | |
| texts_in_batch = set() | |
| batch_format = None #2 vs 3 col format for this batch | |
| #Add data from several sub datasets | |
| for _ in range(args.datasets_per_batch): | |
| valid_dataset = False #Check that datasets have the same 2/3 col format | |
| while not valid_dataset: | |
| data_idx = random.choice(dataset_indices) | |
| if batch_format is None: | |
| batch_format = num_cols[data_idx] | |
| valid_dataset = True | |
| else: #Check that this dataset has the same format | |
| valid_dataset = (batch_format == num_cols[data_idx]) | |
| #Get data from this dataset | |
| dataset = datasets[data_idx] | |
| for _ in range(num_same_dataset): | |
| for _ in range(args.nprocs): | |
| batch_device = [] #A batch for one device | |
| while len(batch_device) < args.batch_size: | |
| sample = next(dataset) | |
| in_batch = False | |
| for text in sample: | |
| if text in texts_in_batch: | |
| in_batch = True | |
| break | |
| if not in_batch: | |
| for text in sample: | |
| texts_in_batch.add(text) | |
| batch_device.append(sample) | |
| queue.put(batch_device) | |
| class RedditDataset: | |
| """ | |
| A class that handles the reddit data files | |
| """ | |
| def __init__(self, filepath): | |
| self.filepath = filepath | |
| def __iter__(self): | |
| while True: | |
| with gzip.open(self.filepath, "rt") as fIn: | |
| for line in fIn: | |
| data = json.loads(line) | |
| if "response" in data and "context" in data: | |
| yield [data["response"], data["context"]] | |
| class Dataset: | |
| """ | |
| A class that handles one dataset | |
| """ | |
| def __init__(self, filepath): | |
| self.filepath = filepath | |
| def __iter__(self): | |
| max_dataset_size = 10*1000*1000 #Cache small datasets in memory | |
| dataset = [] | |
| data_format = None | |
| while dataset is None or len(dataset) == 0: | |
| with gzip.open(self.filepath, "rt") as fIn: | |
| for line in fIn: | |
| data = json.loads(line) | |
| if isinstance(data, dict): | |
| data = data['texts'] | |
| if data_format is None: | |
| data_format = len(data) | |
| #Ensure that all entries are of the same 2/3 col format | |
| assert len(data) == data_format | |
| if dataset is not None: | |
| dataset.append(data) | |
| if len(dataset) >= max_dataset_size: | |
| dataset = None | |
| yield data | |
| # Data loaded. Now stream to the queue | |
| # Shuffle for each epoch | |
| while True: | |
| random.shuffle(dataset) | |
| for data in dataset: | |
| yield data | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased') | |
| parser.add_argument('--steps', type=int, default=2000) | |
| parser.add_argument('--save_steps', type=int, default=10000) | |
| parser.add_argument('--batch_size', type=int, default=64) | |
| parser.add_argument('--max_length', type=int, default=128) | |
| parser.add_argument('--nprocs', type=int, default=8) | |
| parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch") | |
| parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product") | |
| parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files") | |
| parser.add_argument('data_config', help="A data_config.json file") | |
| parser.add_argument('output') | |
| args = parser.parse_args() | |
| # Ensure global batch size is divisble by data_sample_size | |
| assert (args.batch_size*args.nprocs) % args.datasets_per_batch == 0 | |
| logging.info("Output: "+args.output) | |
| if os.path.exists(args.output): | |
| print("Output folder already exists.") | |
| input("Continue?") | |
| # Write train script to output path | |
| os.makedirs(args.output, exist_ok=True) | |
| data_config_path = os.path.join(args.output, 'data_config.json') | |
| copyfile(args.data_config, data_config_path) | |
| train_script_path = os.path.join(args.output, 'train_script.py') | |
| copyfile(__file__, train_script_path) | |
| with open(train_script_path, 'a') as fOut: | |
| fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv)) | |
| #Load data config | |
| with open(args.data_config) as fIn: | |
| data_config = json.load(fIn) | |
| queue = mp.Queue(maxsize=100*args.nprocs) | |
| filepaths = [] | |
| dataset_indices = [] | |
| for idx, data in enumerate(data_config): | |
| filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name'])) | |
| dataset_indices.extend([idx]*data['weight']) | |
| # Start producer | |
| p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices)) | |
| p.start() | |
| # Run training | |
| print("Start processes:", args.nprocs) | |
| xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork') | |
| print("Training done") | |
| print("It might be that not all processes exit automatically. In that case you must manually kill this process.") | |
| print("With 'pkill python' you can kill all remaining python processes") | |
| p.kill() | |
| exit() | |
| # Script was called via: | |
| #python train_many_data_files_v2.py --steps 1000000 --batch_size 128 --model nreimers/MiniLM-L6-H384-uncased train_data_configs/all_datasets_v4.json output/all_datasets_v4_MiniLM-L6-H384-uncased-batch128 |