Update ner_tool.py
Browse files- ner_tool.py +168 -7
ner_tool.py
CHANGED
|
@@ -62,7 +62,10 @@ class NamedEntityRecognitionTool(Tool):
|
|
| 62 |
"WORK_OF_ART": "🎨 Work of Art",
|
| 63 |
"LAW": "⚖️ Law",
|
| 64 |
"LANGUAGE": "🗣️ Language",
|
| 65 |
-
"FAC": "🏢 Facility"
|
|
|
|
|
|
|
|
|
|
| 66 |
}
|
| 67 |
# Pipeline will be lazily loaded
|
| 68 |
self._pipeline = None
|
|
@@ -71,14 +74,41 @@ class NamedEntityRecognitionTool(Tool):
|
|
| 71 |
"""Load the NER pipeline with the specified model."""
|
| 72 |
try:
|
| 73 |
from transformers import pipeline
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
return True
|
| 76 |
except Exception as e:
|
| 77 |
print(f"Error loading model {model_name}: {str(e)}")
|
| 78 |
try:
|
| 79 |
# Fall back to default model
|
| 80 |
from transformers import pipeline
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
return True
|
| 83 |
except Exception as fallback_error:
|
| 84 |
print(f"Error loading fallback model: {str(fallback_error)}")
|
|
@@ -88,6 +118,34 @@ class NamedEntityRecognitionTool(Tool):
|
|
| 88 |
"""Convert technical entity labels to friendly descriptions with color indicators."""
|
| 89 |
# Strip B- or I- prefixes that indicate beginning or inside of entity
|
| 90 |
clean_label = label.replace("B-", "").replace("I-", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
return self.entity_colors.get(clean_label, f"🔷 {clean_label}")
|
| 92 |
|
| 93 |
def forward(self, text: str, model: str = None, aggregation: str = None, min_score: float = None) -> str:
|
|
@@ -127,6 +185,16 @@ class NamedEntityRecognitionTool(Tool):
|
|
| 127 |
# Filter by confidence score
|
| 128 |
entities = [e for e in entities if e.get('score', 0) >= min_score]
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
if not entities:
|
| 131 |
return "No entities were detected in the text with the current settings."
|
| 132 |
|
|
@@ -143,9 +211,40 @@ class NamedEntityRecognitionTool(Tool):
|
|
| 143 |
|
| 144 |
def _format_simple(self, text: str, entities: List[Dict[str, Any]]) -> str:
|
| 145 |
"""Format entities as a simple list."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
result = "Named Entities Found:\n\n"
|
| 147 |
|
| 148 |
-
for entity in
|
| 149 |
word = entity.get("word", "")
|
| 150 |
label = entity.get("entity", "UNKNOWN")
|
| 151 |
score = entity.get("score", 0)
|
|
@@ -157,10 +256,41 @@ class NamedEntityRecognitionTool(Tool):
|
|
| 157 |
|
| 158 |
def _format_grouped(self, text: str, entities: List[Dict[str, Any]]) -> str:
|
| 159 |
"""Format entities grouped by their category."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
# Group entities by their label
|
| 161 |
grouped = {}
|
| 162 |
|
| 163 |
-
for entity in
|
| 164 |
word = entity.get("word", "")
|
| 165 |
label = entity.get("entity", "UNKNOWN").replace("B-", "").replace("I-", "")
|
| 166 |
|
|
@@ -181,11 +311,42 @@ class NamedEntityRecognitionTool(Tool):
|
|
| 181 |
|
| 182 |
def _format_detailed(self, text: str, entities: List[Dict[str, Any]]) -> str:
|
| 183 |
"""Format entities with detailed information including position in text."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
# First, build an entity map to highlight the entire text
|
| 185 |
character_labels = [None] * len(text)
|
| 186 |
|
| 187 |
# Mark each character with its entity
|
| 188 |
-
for entity in
|
| 189 |
start = entity.get("start", 0)
|
| 190 |
end = entity.get("end", 0)
|
| 191 |
label = entity.get("entity", "UNKNOWN")
|
|
@@ -226,7 +387,7 @@ class NamedEntityRecognitionTool(Tool):
|
|
| 226 |
|
| 227 |
# Get entity details
|
| 228 |
entity_details = []
|
| 229 |
-
for entity in
|
| 230 |
word = entity.get("word", "")
|
| 231 |
label = entity.get("entity", "UNKNOWN")
|
| 232 |
score = entity.get("score", 0)
|
|
|
|
| 62 |
"WORK_OF_ART": "🎨 Work of Art",
|
| 63 |
"LAW": "⚖️ Law",
|
| 64 |
"LANGUAGE": "🗣️ Language",
|
| 65 |
+
"FAC": "🏢 Facility",
|
| 66 |
+
# Fix for models that don't properly tag entities
|
| 67 |
+
"O": "Not an entity",
|
| 68 |
+
"UNKNOWN": "🔷 Entity"
|
| 69 |
}
|
| 70 |
# Pipeline will be lazily loaded
|
| 71 |
self._pipeline = None
|
|
|
|
| 74 |
"""Load the NER pipeline with the specified model."""
|
| 75 |
try:
|
| 76 |
from transformers import pipeline
|
| 77 |
+
import torch
|
| 78 |
+
|
| 79 |
+
# Try to detect if GPU is available
|
| 80 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 81 |
+
|
| 82 |
+
# For some models, we need special handling
|
| 83 |
+
if "dslim/bert-base-NER" in model_name:
|
| 84 |
+
# This model works better with a specific aggregation strategy
|
| 85 |
+
self._pipeline = pipeline(
|
| 86 |
+
"ner",
|
| 87 |
+
model=model_name,
|
| 88 |
+
aggregation_strategy="first",
|
| 89 |
+
device=device
|
| 90 |
+
)
|
| 91 |
+
else:
|
| 92 |
+
self._pipeline = pipeline(
|
| 93 |
+
"ner",
|
| 94 |
+
model=model_name,
|
| 95 |
+
aggregation_strategy="simple",
|
| 96 |
+
device=device
|
| 97 |
+
)
|
| 98 |
return True
|
| 99 |
except Exception as e:
|
| 100 |
print(f"Error loading model {model_name}: {str(e)}")
|
| 101 |
try:
|
| 102 |
# Fall back to default model
|
| 103 |
from transformers import pipeline
|
| 104 |
+
import torch
|
| 105 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 106 |
+
self._pipeline = pipeline(
|
| 107 |
+
"ner",
|
| 108 |
+
model=self.default_model,
|
| 109 |
+
aggregation_strategy="first",
|
| 110 |
+
device=device
|
| 111 |
+
)
|
| 112 |
return True
|
| 113 |
except Exception as fallback_error:
|
| 114 |
print(f"Error loading fallback model: {str(fallback_error)}")
|
|
|
|
| 118 |
"""Convert technical entity labels to friendly descriptions with color indicators."""
|
| 119 |
# Strip B- or I- prefixes that indicate beginning or inside of entity
|
| 120 |
clean_label = label.replace("B-", "").replace("I-", "")
|
| 121 |
+
|
| 122 |
+
# Handle common name and location patterns with heuristics
|
| 123 |
+
if clean_label == "UNKNOWN" or clean_label == "O":
|
| 124 |
+
# Apply some basic heuristics to detect entity types
|
| 125 |
+
# This is a fallback when the model fails to properly tag
|
| 126 |
+
text = self._current_entity_text.lower() if hasattr(self, '_current_entity_text') else ""
|
| 127 |
+
|
| 128 |
+
# Check for capitalized words which might be names or places
|
| 129 |
+
if text and text[0].isupper():
|
| 130 |
+
# Countries and major cities
|
| 131 |
+
countries_and_cities = ["germany", "france", "spain", "italy", "london",
|
| 132 |
+
"paris", "berlin", "rome", "new york", "tokyo",
|
| 133 |
+
"beijing", "moscow", "canada", "australia", "india",
|
| 134 |
+
"china", "japan", "russia", "brazil", "mexico"]
|
| 135 |
+
|
| 136 |
+
if text.lower() in countries_and_cities:
|
| 137 |
+
return self.entity_colors.get("LOC", "🟨 Location")
|
| 138 |
+
|
| 139 |
+
# Common first names (add more as needed)
|
| 140 |
+
common_names = ["john", "mike", "sarah", "david", "michael", "james",
|
| 141 |
+
"robert", "mary", "jennifer", "linda", "michael", "william",
|
| 142 |
+
"kristof", "chris", "thomas", "daniel", "matthew", "joseph",
|
| 143 |
+
"donald", "richard", "charles", "paul", "mark", "kevin"]
|
| 144 |
+
|
| 145 |
+
name_parts = text.lower().split()
|
| 146 |
+
if name_parts and name_parts[0] in common_names:
|
| 147 |
+
return self.entity_colors.get("PER", "🟥 Person")
|
| 148 |
+
|
| 149 |
return self.entity_colors.get(clean_label, f"🔷 {clean_label}")
|
| 150 |
|
| 151 |
def forward(self, text: str, model: str = None, aggregation: str = None, min_score: float = None) -> str:
|
|
|
|
| 185 |
# Filter by confidence score
|
| 186 |
entities = [e for e in entities if e.get('score', 0) >= min_score]
|
| 187 |
|
| 188 |
+
# Store the text for better heuristics
|
| 189 |
+
for entity in entities:
|
| 190 |
+
word = entity.get("word", "")
|
| 191 |
+
start = entity.get("start", 0)
|
| 192 |
+
end = entity.get("end", 0)
|
| 193 |
+
# Store the actual text from the input for better entity type detection
|
| 194 |
+
entity['actual_text'] = text[start:end]
|
| 195 |
+
# Set this for _get_friendly_label to use
|
| 196 |
+
self._current_entity_text = text[start:end]
|
| 197 |
+
|
| 198 |
if not entities:
|
| 199 |
return "No entities were detected in the text with the current settings."
|
| 200 |
|
|
|
|
| 211 |
|
| 212 |
def _format_simple(self, text: str, entities: List[Dict[str, Any]]) -> str:
|
| 213 |
"""Format entities as a simple list."""
|
| 214 |
+
# Process word pieces and handle subtoken merging
|
| 215 |
+
merged_entities = []
|
| 216 |
+
current_entity = None
|
| 217 |
+
|
| 218 |
+
for entity in sorted(entities, key=lambda e: e.get("start", 0)):
|
| 219 |
+
word = entity.get("word", "")
|
| 220 |
+
start = entity.get("start", 0)
|
| 221 |
+
end = entity.get("end", 0)
|
| 222 |
+
label = entity.get("entity", "UNKNOWN")
|
| 223 |
+
score = entity.get("score", 0)
|
| 224 |
+
|
| 225 |
+
# Check if this is a continuation (subtoken)
|
| 226 |
+
if word.startswith("##"):
|
| 227 |
+
if current_entity:
|
| 228 |
+
# Extend the current entity
|
| 229 |
+
current_entity["word"] += word.replace("##", "")
|
| 230 |
+
current_entity["end"] = end
|
| 231 |
+
# Keep the average score
|
| 232 |
+
current_entity["score"] = (current_entity["score"] + score) / 2
|
| 233 |
+
continue
|
| 234 |
+
|
| 235 |
+
# Start a new entity
|
| 236 |
+
current_entity = {
|
| 237 |
+
"word": word,
|
| 238 |
+
"start": start,
|
| 239 |
+
"end": end,
|
| 240 |
+
"entity": label,
|
| 241 |
+
"score": score
|
| 242 |
+
}
|
| 243 |
+
merged_entities.append(current_entity)
|
| 244 |
+
|
| 245 |
result = "Named Entities Found:\n\n"
|
| 246 |
|
| 247 |
+
for entity in merged_entities:
|
| 248 |
word = entity.get("word", "")
|
| 249 |
label = entity.get("entity", "UNKNOWN")
|
| 250 |
score = entity.get("score", 0)
|
|
|
|
| 256 |
|
| 257 |
def _format_grouped(self, text: str, entities: List[Dict[str, Any]]) -> str:
|
| 258 |
"""Format entities grouped by their category."""
|
| 259 |
+
# Process word pieces and handle subtoken merging
|
| 260 |
+
merged_entities = []
|
| 261 |
+
current_entity = None
|
| 262 |
+
|
| 263 |
+
for entity in sorted(entities, key=lambda e: e.get("start", 0)):
|
| 264 |
+
word = entity.get("word", "")
|
| 265 |
+
start = entity.get("start", 0)
|
| 266 |
+
end = entity.get("end", 0)
|
| 267 |
+
label = entity.get("entity", "UNKNOWN")
|
| 268 |
+
score = entity.get("score", 0)
|
| 269 |
+
|
| 270 |
+
# Check if this is a continuation (subtoken)
|
| 271 |
+
if word.startswith("##"):
|
| 272 |
+
if current_entity:
|
| 273 |
+
# Extend the current entity
|
| 274 |
+
current_entity["word"] += word.replace("##", "")
|
| 275 |
+
current_entity["end"] = end
|
| 276 |
+
# Keep the average score
|
| 277 |
+
current_entity["score"] = (current_entity["score"] + score) / 2
|
| 278 |
+
continue
|
| 279 |
+
|
| 280 |
+
# Start a new entity
|
| 281 |
+
current_entity = {
|
| 282 |
+
"word": word,
|
| 283 |
+
"start": start,
|
| 284 |
+
"end": end,
|
| 285 |
+
"entity": label,
|
| 286 |
+
"score": score
|
| 287 |
+
}
|
| 288 |
+
merged_entities.append(current_entity)
|
| 289 |
+
|
| 290 |
# Group entities by their label
|
| 291 |
grouped = {}
|
| 292 |
|
| 293 |
+
for entity in merged_entities:
|
| 294 |
word = entity.get("word", "")
|
| 295 |
label = entity.get("entity", "UNKNOWN").replace("B-", "").replace("I-", "")
|
| 296 |
|
|
|
|
| 311 |
|
| 312 |
def _format_detailed(self, text: str, entities: List[Dict[str, Any]]) -> str:
|
| 313 |
"""Format entities with detailed information including position in text."""
|
| 314 |
+
# Process word pieces and handle subtoken merging
|
| 315 |
+
merged_entities = []
|
| 316 |
+
current_entity = None
|
| 317 |
+
|
| 318 |
+
for entity in sorted(entities, key=lambda e: e.get("start", 0)):
|
| 319 |
+
word = entity.get("word", "")
|
| 320 |
+
start = entity.get("start", 0)
|
| 321 |
+
end = entity.get("end", 0)
|
| 322 |
+
label = entity.get("entity", "UNKNOWN")
|
| 323 |
+
score = entity.get("score", 0)
|
| 324 |
+
|
| 325 |
+
# Check if this is a continuation (subtoken)
|
| 326 |
+
if word.startswith("##"):
|
| 327 |
+
if current_entity:
|
| 328 |
+
# Extend the current entity
|
| 329 |
+
current_entity["word"] += word.replace("##", "")
|
| 330 |
+
current_entity["end"] = end
|
| 331 |
+
# Keep the average score
|
| 332 |
+
current_entity["score"] = (current_entity["score"] + score) / 2
|
| 333 |
+
continue
|
| 334 |
+
|
| 335 |
+
# Start a new entity
|
| 336 |
+
current_entity = {
|
| 337 |
+
"word": word,
|
| 338 |
+
"start": start,
|
| 339 |
+
"end": end,
|
| 340 |
+
"entity": label,
|
| 341 |
+
"score": score
|
| 342 |
+
}
|
| 343 |
+
merged_entities.append(current_entity)
|
| 344 |
+
|
| 345 |
# First, build an entity map to highlight the entire text
|
| 346 |
character_labels = [None] * len(text)
|
| 347 |
|
| 348 |
# Mark each character with its entity
|
| 349 |
+
for entity in merged_entities:
|
| 350 |
start = entity.get("start", 0)
|
| 351 |
end = entity.get("end", 0)
|
| 352 |
label = entity.get("entity", "UNKNOWN")
|
|
|
|
| 387 |
|
| 388 |
# Get entity details
|
| 389 |
entity_details = []
|
| 390 |
+
for entity in merged_entities:
|
| 391 |
word = entity.get("word", "")
|
| 392 |
label = entity.get("entity", "UNKNOWN")
|
| 393 |
score = entity.get("score", 0)
|