Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
|
|
|
| 3 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 4 |
import torch
|
| 5 |
import pandas as pd
|
| 6 |
from datasets import Dataset
|
|
|
|
| 7 |
|
| 8 |
# Title and description
|
| 9 |
st.title("OSINT Tool 🏢")
|
|
@@ -11,7 +13,7 @@ st.markdown("""
|
|
| 11 |
This tool performs **Open Source Intelligence (OSINT)** analysis on GitHub repositories and fetches titles from URLs.
|
| 12 |
It also allows uploading datasets (CSV format) for fine-tuning models like **DistilBERT**.
|
| 13 |
""")
|
| 14 |
-
|
| 15 |
# Sidebar for navigation
|
| 16 |
st.sidebar.title("Navigation")
|
| 17 |
app_mode = st.sidebar.radio("Choose the mode", ["GitHub Repository Analysis", "URL Title Fetcher", "Dataset Upload & Fine-Tuning"])
|
|
@@ -98,18 +100,30 @@ elif app_mode == "Dataset Upload & Fine-Tuning":
|
|
| 98 |
|
| 99 |
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
| 100 |
|
| 101 |
-
#
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
"
|
| 106 |
-
"
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
| 113 |
except Exception as e:
|
| 114 |
st.error(f"Error during fine-tuning: {e}")
|
| 115 |
else:
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import requests
|
| 3 |
+
import re
|
| 4 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 5 |
import torch
|
| 6 |
import pandas as pd
|
| 7 |
from datasets import Dataset
|
| 8 |
+
from huggingface_hub import hf_api
|
| 9 |
|
| 10 |
# Title and description
|
| 11 |
st.title("OSINT Tool 🏢")
|
|
|
|
| 13 |
This tool performs **Open Source Intelligence (OSINT)** analysis on GitHub repositories and fetches titles from URLs.
|
| 14 |
It also allows uploading datasets (CSV format) for fine-tuning models like **DistilBERT**.
|
| 15 |
""")
|
| 16 |
+
|
| 17 |
# Sidebar for navigation
|
| 18 |
st.sidebar.title("Navigation")
|
| 19 |
app_mode = st.sidebar.radio("Choose the mode", ["GitHub Repository Analysis", "URL Title Fetcher", "Dataset Upload & Fine-Tuning"])
|
|
|
|
| 100 |
|
| 101 |
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
| 102 |
|
| 103 |
+
# Fine-tuning setup (using Hugging Face Trainer for a complete setup)
|
| 104 |
+
from transformers import Trainer, TrainingArguments
|
| 105 |
+
|
| 106 |
+
training_args = TrainingArguments(
|
| 107 |
+
output_dir="./results",
|
| 108 |
+
evaluation_strategy="epoch",
|
| 109 |
+
learning_rate=2e-5,
|
| 110 |
+
per_device_train_batch_size=16,
|
| 111 |
+
per_device_eval_batch_size=16,
|
| 112 |
+
num_train_epochs=3,
|
| 113 |
+
weight_decay=0.01,
|
| 114 |
+
)
|
| 115 |
|
| 116 |
+
trainer = Trainer(
|
| 117 |
+
model=model,
|
| 118 |
+
args=training_args,
|
| 119 |
+
train_dataset=tokenized_datasets,
|
| 120 |
+
eval_dataset=tokenized_datasets,
|
| 121 |
+
)
|
| 122 |
|
| 123 |
+
# Train the model
|
| 124 |
+
trainer.train()
|
| 125 |
+
|
| 126 |
+
st.success("Fine-tuning completed successfully!")
|
| 127 |
except Exception as e:
|
| 128 |
st.error(f"Error during fine-tuning: {e}")
|
| 129 |
else:
|