Create src/fine_tune_helpers.py
Browse files- src/fine_tune_helpers.py +32 -35
src/fine_tune_helpers.py
CHANGED
|
@@ -1,39 +1,36 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
|
| 3 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 4 |
-
import torch
|
| 5 |
|
| 6 |
-
def
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
"output_dir": "./results",
|
| 30 |
-
"num_train_epochs": 3,
|
| 31 |
-
"per_device_train_batch_size": 16,
|
| 32 |
-
"logging_dir": "./logs",
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
st.success("Fine-tuning started (demo)!") # Fine-tuning process goes here
|
| 36 |
-
except Exception as e:
|
| 37 |
-
st.error(f"Error during fine-tuning: {e}")
|
| 38 |
-
else:
|
| 39 |
-
st.warning("Please select a model for fine-tuning.")
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
import logging
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
def preprocess_data(dataset_path):
|
| 5 |
+
try:
|
| 6 |
+
data = pd.read_csv(dataset_path)
|
| 7 |
+
logging.info("Data loaded successfully")
|
| 8 |
+
|
| 9 |
+
# Example preprocessing: clean data, handle missing values, etc.
|
| 10 |
+
data.dropna(inplace=True)
|
| 11 |
+
|
| 12 |
+
return data
|
| 13 |
+
except Exception as e:
|
| 14 |
+
logging.error(f"Error during data preprocessing: {e}")
|
| 15 |
|
| 16 |
+
def train_model(data, config):
|
| 17 |
+
try:
|
| 18 |
+
# Assuming some model training logic
|
| 19 |
+
model = "YourModel" # Placeholder
|
| 20 |
+
logging.info("Model training started")
|
| 21 |
+
|
| 22 |
+
# Configuration-based training
|
| 23 |
+
# Use hyperparameters from config
|
| 24 |
+
learning_rate = config.getfloat("model", "learning_rate")
|
| 25 |
+
|
| 26 |
+
return model
|
| 27 |
+
except Exception as e:
|
| 28 |
+
logging.error(f"Error during model training: {e}")
|
| 29 |
|
| 30 |
+
def save_model(model):
|
| 31 |
+
try:
|
| 32 |
+
# Save the fine-tuned model
|
| 33 |
+
model.save("model_path")
|
| 34 |
+
logging.info("Model saved successfully")
|
| 35 |
+
except Exception as e:
|
| 36 |
+
logging.error(f"Error saving model: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|