Update app.py
Browse files
app.py
CHANGED
|
@@ -19,11 +19,11 @@ model_mapping = {
|
|
| 19 |
|
| 20 |
model_name = model_mapping.get(model_choice, "Canstralian/CyberAttackDetection")
|
| 21 |
|
| 22 |
-
#
|
| 23 |
@st.cache_resource
|
| 24 |
def load_model(model_name):
|
|
|
|
| 25 |
try:
|
| 26 |
-
# Load the model and tokenizer
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 28 |
if model_name == "Canstralian/text2shellcommands":
|
| 29 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
@@ -34,8 +34,9 @@ def load_model(model_name):
|
|
| 34 |
st.error(f"Error loading model: {e}")
|
| 35 |
return None, None
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
# Input text box in the main panel
|
| 41 |
st.title(f"{model_choice} Model")
|
|
@@ -58,7 +59,9 @@ if user_input and model and tokenizer:
|
|
| 58 |
outputs = model(**inputs)
|
| 59 |
logits = outputs.logits
|
| 60 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
|
|
|
| 61 |
st.write(f"Predicted Class: {predicted_class}")
|
|
|
|
| 62 |
st.write(f"Logits: {logits}")
|
| 63 |
|
| 64 |
else:
|
|
|
|
| 19 |
|
| 20 |
model_name = model_mapping.get(model_choice, "Canstralian/CyberAttackDetection")
|
| 21 |
|
| 22 |
+
# Cache model and tokenizer to optimize load time
|
| 23 |
@st.cache_resource
|
| 24 |
def load_model(model_name):
|
| 25 |
+
"""Load the model and tokenizer."""
|
| 26 |
try:
|
|
|
|
| 27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 28 |
if model_name == "Canstralian/text2shellcommands":
|
| 29 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
|
| 34 |
st.error(f"Error loading model: {e}")
|
| 35 |
return None, None
|
| 36 |
|
| 37 |
+
# Display progress spinner while loading model
|
| 38 |
+
with st.spinner("Loading model..."):
|
| 39 |
+
tokenizer, model = load_model(model_name)
|
| 40 |
|
| 41 |
# Input text box in the main panel
|
| 42 |
st.title(f"{model_choice} Model")
|
|
|
|
| 59 |
outputs = model(**inputs)
|
| 60 |
logits = outputs.logits
|
| 61 |
predicted_class = torch.argmax(logits, dim=-1).item()
|
| 62 |
+
confidence = torch.softmax(logits, dim=-1).max().item() # Calculate confidence score
|
| 63 |
st.write(f"Predicted Class: {predicted_class}")
|
| 64 |
+
st.write(f"Confidence: {confidence:.2f}")
|
| 65 |
st.write(f"Logits: {logits}")
|
| 66 |
|
| 67 |
else:
|