Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,15 +2,22 @@ import gradio as gr
|
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
| 4 |
import os
|
| 5 |
-
import requests
|
| 6 |
import json
|
| 7 |
from PIL import Image
|
| 8 |
import io
|
| 9 |
import base64
|
| 10 |
from openai import OpenAI
|
|
|
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# Qwen API configuration
|
| 16 |
QWEN_BASE_URL = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
|
@@ -39,7 +46,7 @@ def encode_image(image_array):
|
|
| 39 |
|
| 40 |
def detect_layout(image):
|
| 41 |
"""
|
| 42 |
-
Perform layout detection on the uploaded image using YOLO
|
| 43 |
|
| 44 |
Args:
|
| 45 |
image: The uploaded image as a numpy array
|
|
@@ -51,46 +58,44 @@ def detect_layout(image):
|
|
| 51 |
if image is None:
|
| 52 |
return None, "Error: No image uploaded."
|
| 53 |
|
| 54 |
-
# Convert numpy array to PIL Image
|
| 55 |
-
pil_image = Image.fromarray(image)
|
| 56 |
-
|
| 57 |
-
# Convert PIL Image to bytes for API request
|
| 58 |
-
img_byte_arr = io.BytesIO()
|
| 59 |
-
pil_image.save(img_byte_arr, format='PNG')
|
| 60 |
-
img_byte_arr = img_byte_arr.getvalue()
|
| 61 |
-
|
| 62 |
-
# Prepare API request
|
| 63 |
-
files = {'image': ('image.png', img_byte_arr, 'image/png')}
|
| 64 |
-
|
| 65 |
try:
|
| 66 |
-
#
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
detection_results = response.json()
|
| 70 |
|
| 71 |
# Create a copy of the image for visualization
|
| 72 |
annotated_image = image.copy()
|
|
|
|
| 73 |
|
| 74 |
# Draw detection results
|
| 75 |
-
for
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
conf =
|
|
|
|
|
|
|
| 79 |
|
| 80 |
# Generate a color for each class
|
| 81 |
color = tuple(np.random.randint(0, 255, 3).tolist())
|
| 82 |
|
| 83 |
# Draw bounding box and label
|
| 84 |
-
cv2.rectangle(annotated_image, (
|
| 85 |
label = f'{cls_name} {conf:.2f}'
|
| 86 |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
| 87 |
-
cv2.rectangle(annotated_image, (
|
| 88 |
-
cv2.putText(annotated_image, label, (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# Format layout information for Qwen
|
| 91 |
-
|
| 92 |
|
| 93 |
-
return annotated_image,
|
| 94 |
|
| 95 |
except Exception as e:
|
| 96 |
return None, f"Error during layout detection: {str(e)}"
|
|
|
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
| 4 |
import os
|
|
|
|
| 5 |
import json
|
| 6 |
from PIL import Image
|
| 7 |
import io
|
| 8 |
import base64
|
| 9 |
from openai import OpenAI
|
| 10 |
+
from ultralytics import YOLO
|
| 11 |
|
| 12 |
+
# Load the Latex2Layout model
|
| 13 |
+
model_path = "latex2layout_object_detection_yolov8.pt"
|
| 14 |
+
if not os.path.exists(model_path):
|
| 15 |
+
raise FileNotFoundError(f"Model file not found at {model_path}")
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
model = YOLO(model_path)
|
| 19 |
+
except Exception as e:
|
| 20 |
+
raise RuntimeError(f"Failed to load Latex2Layout model: {e}")
|
| 21 |
|
| 22 |
# Qwen API configuration
|
| 23 |
QWEN_BASE_URL = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
|
|
|
| 46 |
|
| 47 |
def detect_layout(image):
|
| 48 |
"""
|
| 49 |
+
Perform layout detection on the uploaded image using local YOLO model.
|
| 50 |
|
| 51 |
Args:
|
| 52 |
image: The uploaded image as a numpy array
|
|
|
|
| 58 |
if image is None:
|
| 59 |
return None, "Error: No image uploaded."
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
try:
|
| 62 |
+
# Run detection using local YOLO model
|
| 63 |
+
results = model(image)
|
| 64 |
+
result = results[0]
|
|
|
|
| 65 |
|
| 66 |
# Create a copy of the image for visualization
|
| 67 |
annotated_image = image.copy()
|
| 68 |
+
layout_info = []
|
| 69 |
|
| 70 |
# Draw detection results
|
| 71 |
+
for box in result.boxes:
|
| 72 |
+
# Get bounding box coordinates
|
| 73 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
|
| 74 |
+
conf = float(box.conf[0])
|
| 75 |
+
cls_id = int(box.cls[0])
|
| 76 |
+
cls_name = result.names[cls_id]
|
| 77 |
|
| 78 |
# Generate a color for each class
|
| 79 |
color = tuple(np.random.randint(0, 255, 3).tolist())
|
| 80 |
|
| 81 |
# Draw bounding box and label
|
| 82 |
+
cv2.rectangle(annotated_image, (x1, y1), (x2, y2), color, 2)
|
| 83 |
label = f'{cls_name} {conf:.2f}'
|
| 84 |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
| 85 |
+
cv2.rectangle(annotated_image, (x1, y1-label_height-5), (x1+label_width, y1), color, -1)
|
| 86 |
+
cv2.putText(annotated_image, label, (x1, y1-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
| 87 |
+
|
| 88 |
+
# Add detection to layout info
|
| 89 |
+
layout_info.append({
|
| 90 |
+
'bbox': [x1, y1, x2, y2],
|
| 91 |
+
'class': cls_name,
|
| 92 |
+
'confidence': conf
|
| 93 |
+
})
|
| 94 |
|
| 95 |
# Format layout information for Qwen
|
| 96 |
+
layout_info_str = json.dumps(layout_info, indent=2)
|
| 97 |
|
| 98 |
+
return annotated_image, layout_info_str
|
| 99 |
|
| 100 |
except Exception as e:
|
| 101 |
return None, f"Error during layout detection: {str(e)}"
|