Spaces:
Sleeping
Sleeping
File size: 5,379 Bytes
f2e41c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# backend/model.py
import cv2
import numpy as np
from transformers import pipeline
from PIL import Image, ImageOps
import torch
import io
import base64
class DualModelDetector:
def __init__(self):
print("β³ Loading Models...")
device = 0 if torch.cuda.is_available() else -1
# MODEL 1: GenAI Detector
print(" 1. Loading GenAI Detector (v2.0)...")
self.genai_pipe = pipeline("image-classification", model="prithivMLmods/AI-vs-Deepfake-vs-Real-v2.0", device=device)
# MODEL 2: Face Deepfake Detector
print(" 2. Loading Face Deepfake Detector (v2)...")
self.face_pipe = pipeline("image-classification", model="prithivMLmods/Deep-Fake-Detector-v2-Model", device=device)
self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
print("β
System Ready: Visual Debug Mode Active")
def img_to_base64(self, img):
"""Converts a PIL Image to a Base64 string for the frontend"""
buffered = io.BytesIO()
img.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def predict(self, image: Image.Image):
try:
if image.mode != "RGB":
image = image.convert("RGB")
# --- PHASE 1: GENAI DETECTION ---
genai_results = self.genai_pipe(image)
genai_top = genai_results[0]
genai_score = genai_top['score']
is_ai_art = "artificial" in genai_top['label'].lower()
genai_label = "Real Image"
if is_ai_art and genai_score > 0.6:
genai_label = "AI Generated Art"
genai_data = {
"is_detected": is_ai_art,
"confidence": genai_score,
"label": genai_label
}
# --- PHASE 2: FACE DETECTION ---
open_cv_image = np.array(image)
open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_RGB2BGR)
gray = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
deepfake_data = {
"face_found": False,
"is_detected": False,
"confidence": 0.0,
"label": "No Face Found"
}
# Default to full image if no face (so we can still see what it saw)
target_face_image = image
if len(faces) > 0:
deepfake_data["face_found"] = True
sorted_faces = sorted(faces, key=lambda b: b[2] * b[3], reverse=True)
x, y, w, h = sorted_faces[0]
# Ratio Check logic
image_area = image.width * image.height
face_area = w * h
face_ratio = face_area / image_area
if face_ratio > 0.20:
# Case A: Large Face (Portrait) -> Use Full Image
target_face_image = image
else:
# Case B: Small Face -> Crop it
max_dim = max(w, h)
margin = int(max_dim * 0.6)
center_x = x + w // 2
center_y = y + h // 2
left = max(0, center_x - (max_dim + margin) // 2)
top = max(0, center_y - (max_dim + margin) // 2)
right = min(image.width, center_x + (max_dim + margin) // 2)
bottom = min(image.height, center_y + (max_dim + margin) // 2)
target_face_image = image.crop((left, top, right, bottom))
# Preprocess (Pad to Square)
target_face_image = ImageOps.pad(target_face_image, (224, 224), color="black")
# --- GENERATE DEBUG IMAGE ---
# This is the exact pixel data the AI is analyzing
debug_b64 = self.img_to_base64(target_face_image)
# Run Deepfake Model
face_results = self.face_pipe(target_face_image)
face_top = face_results[0]
is_deepfake = "fake" in face_top['label'].lower() or "deepfake" in face_top['label'].lower()
deepfake_score = face_top['score']
SAFE_THRESHOLD = 0.55
if is_deepfake and deepfake_score < SAFE_THRESHOLD:
is_deepfake = False
deepfake_score = 0.0
deepfake_data.update({
"is_detected": is_deepfake,
"confidence": deepfake_score,
"label": "Deepfake Face" if is_deepfake else "Real Face"
})
return {
"genai_analysis": genai_data,
"deepfake_analysis": deepfake_data,
"final_verdict": self._get_verdict(genai_data, deepfake_data),
"debug_image": debug_b64 # <--- SENDING IMAGE BACK
}
except Exception as e:
print(f"β Error: {e}")
import traceback
traceback.print_exc()
return {"error": str(e)}
def _get_verdict(self, genai, deepfake):
if deepfake['face_found'] and deepfake['is_detected']:
return "Deepfake Detected"
if genai['is_detected']:
return "AI Generated Image"
return "Real Image" |