File size: 5,379 Bytes
f2e41c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# backend/model.py
import cv2
import numpy as np
from transformers import pipeline
from PIL import Image, ImageOps
import torch
import io
import base64

class DualModelDetector:
    def __init__(self):
        print("⏳ Loading Models...")
        device = 0 if torch.cuda.is_available() else -1
        
        # MODEL 1: GenAI Detector
        print("  1. Loading GenAI Detector (v2.0)...")
        self.genai_pipe = pipeline("image-classification", model="prithivMLmods/AI-vs-Deepfake-vs-Real-v2.0", device=device)

        # MODEL 2: Face Deepfake Detector
        print("  2. Loading Face Deepfake Detector (v2)...")
        self.face_pipe = pipeline("image-classification", model="prithivMLmods/Deep-Fake-Detector-v2-Model", device=device)

        self.face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
        print("βœ… System Ready: Visual Debug Mode Active")

    def img_to_base64(self, img):
        """Converts a PIL Image to a Base64 string for the frontend"""
        buffered = io.BytesIO()
        img.save(buffered, format="JPEG")
        return base64.b64encode(buffered.getvalue()).decode("utf-8")

    def predict(self, image: Image.Image):
        try:
            if image.mode != "RGB":
                image = image.convert("RGB")

            # --- PHASE 1: GENAI DETECTION ---
            genai_results = self.genai_pipe(image)
            genai_top = genai_results[0]
            genai_score = genai_top['score']
            is_ai_art = "artificial" in genai_top['label'].lower()
            
            genai_label = "Real Image"
            if is_ai_art and genai_score > 0.6:
                 genai_label = "AI Generated Art"

            genai_data = {
                "is_detected": is_ai_art,
                "confidence": genai_score,
                "label": genai_label
            }

            # --- PHASE 2: FACE DETECTION ---
            open_cv_image = np.array(image)
            open_cv_image = cv2.cvtColor(open_cv_image, cv2.COLOR_RGB2BGR)
            gray = cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2GRAY)
            
            faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
            
            deepfake_data = {
                "face_found": False,
                "is_detected": False,
                "confidence": 0.0,
                "label": "No Face Found"
            }

            # Default to full image if no face (so we can still see what it saw)
            target_face_image = image 

            if len(faces) > 0:
                deepfake_data["face_found"] = True
                sorted_faces = sorted(faces, key=lambda b: b[2] * b[3], reverse=True)
                x, y, w, h = sorted_faces[0]

                # Ratio Check logic
                image_area = image.width * image.height
                face_area = w * h
                face_ratio = face_area / image_area

                if face_ratio > 0.20:
                    # Case A: Large Face (Portrait) -> Use Full Image
                    target_face_image = image
                else:
                    # Case B: Small Face -> Crop it
                    max_dim = max(w, h)
                    margin = int(max_dim * 0.6)
                    center_x = x + w // 2
                    center_y = y + h // 2
                    left = max(0, center_x - (max_dim + margin) // 2)
                    top = max(0, center_y - (max_dim + margin) // 2)
                    right = min(image.width, center_x + (max_dim + margin) // 2)
                    bottom = min(image.height, center_y + (max_dim + margin) // 2)
                    target_face_image = image.crop((left, top, right, bottom))

            # Preprocess (Pad to Square)
            target_face_image = ImageOps.pad(target_face_image, (224, 224), color="black")

            # --- GENERATE DEBUG IMAGE ---
            # This is the exact pixel data the AI is analyzing
            debug_b64 = self.img_to_base64(target_face_image)

            # Run Deepfake Model
            face_results = self.face_pipe(target_face_image)
            face_top = face_results[0]
            
            is_deepfake = "fake" in face_top['label'].lower() or "deepfake" in face_top['label'].lower()
            deepfake_score = face_top['score']

            SAFE_THRESHOLD = 0.55
            if is_deepfake and deepfake_score < SAFE_THRESHOLD:
                is_deepfake = False
                deepfake_score = 0.0

            deepfake_data.update({
                "is_detected": is_deepfake,
                "confidence": deepfake_score,
                "label": "Deepfake Face" if is_deepfake else "Real Face"
            })

            return {
                "genai_analysis": genai_data,
                "deepfake_analysis": deepfake_data,
                "final_verdict": self._get_verdict(genai_data, deepfake_data),
                "debug_image": debug_b64 # <--- SENDING IMAGE BACK
            }

        except Exception as e:
            print(f"❌ Error: {e}")
            import traceback
            traceback.print_exc()
            return {"error": str(e)}

    def _get_verdict(self, genai, deepfake):
        if deepfake['face_found'] and deepfake['is_detected']:
            return "Deepfake Detected"
        if genai['is_detected']:
            return "AI Generated Image"
        return "Real Image"