Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
from wordlist_generator import generate_wordlist # A mock-up function for your project
|
| 7 |
+
|
| 8 |
+
# Page configuration
|
| 9 |
+
st.set_page_config(page_title="ReconNinja Wordlists", page_icon="💬", layout="wide")
|
| 10 |
+
|
| 11 |
+
# Header section
|
| 12 |
+
st.title("💬 ReconNinja Wordlists")
|
| 13 |
+
st.subheader("Tailored wordlists for efficient penetration testing")
|
| 14 |
+
st.markdown(
|
| 15 |
+
"""
|
| 16 |
+
This application generates customized wordlists for use in network reconnaissance and penetration testing.
|
| 17 |
+
Adjust the parameters to generate wordlists suited for your specific testing scenario.
|
| 18 |
+
"""
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Sidebar for user input
|
| 22 |
+
st.sidebar.header("Customize Your Wordlist")
|
| 23 |
+
st.sidebar.markdown(
|
| 24 |
+
"""
|
| 25 |
+
Adjust the following parameters to create wordlists optimized for your penetration testing tasks.
|
| 26 |
+
"""
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Wordlist customization settings
|
| 30 |
+
wordlist_size = st.sidebar.slider("Wordlist Size", min_value=50, max_value=10000, value=1000, step=50)
|
| 31 |
+
min_length = st.sidebar.slider("Minimum Word Length", min_value=3, max_value=12, value=6)
|
| 32 |
+
max_length = st.sidebar.slider("Maximum Word Length", min_value=3, max_value=12, value=8)
|
| 33 |
+
include_special_chars = st.sidebar.checkbox("Include Special Characters", value=False)
|
| 34 |
+
include_numbers = st.sidebar.checkbox("Include Numbers", value=True)
|
| 35 |
+
|
| 36 |
+
# Display wordlist generation results
|
| 37 |
+
st.header("Generated Wordlist Preview")
|
| 38 |
+
|
| 39 |
+
# Call to a mock-up function for wordlist generation (you will replace this with your actual logic)
|
| 40 |
+
wordlist = generate_wordlist(
|
| 41 |
+
size=wordlist_size,
|
| 42 |
+
min_length=min_length,
|
| 43 |
+
max_length=max_length,
|
| 44 |
+
special_chars=include_special_chars,
|
| 45 |
+
numbers=include_numbers
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Display the first 20 items in the wordlist
|
| 49 |
+
st.write(f"Preview of {wordlist_size} words:")
|
| 50 |
+
st.write(wordlist[:20]) # Show the first 20 words for brevity
|
| 51 |
+
|
| 52 |
+
# Download link for the full wordlist
|
| 53 |
+
st.markdown("### Download Full Wordlist")
|
| 54 |
+
csv_data = pd.Series(wordlist).to_csv(index=False).encode()
|
| 55 |
+
st.download_button(
|
| 56 |
+
label="Download Wordlist as CSV",
|
| 57 |
+
data=csv_data,
|
| 58 |
+
file_name="reconninja_wordlist.csv",
|
| 59 |
+
mime="text/csv"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Visualize wordlist statistics (for example, word length distribution)
|
| 63 |
+
st.header("Wordlist Statistics")
|
| 64 |
+
word_lengths = [len(word) for word in wordlist]
|
| 65 |
+
word_length_df = pd.DataFrame(word_lengths, columns=["Word Length"])
|
| 66 |
+
|
| 67 |
+
# Create a histogram to show the distribution of word lengths
|
| 68 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
| 69 |
+
sns.histplot(word_length_df["Word Length"], kde=True, bins=20, ax=ax)
|
| 70 |
+
ax.set_title("Word Length Distribution")
|
| 71 |
+
ax.set_xlabel("Word Length")
|
| 72 |
+
ax.set_ylabel("Frequency")
|
| 73 |
+
st.pyplot(fig)
|
| 74 |
+
|
| 75 |
+
# Advanced Feature - Analyzing Wordlist Security
|
| 76 |
+
st.header("Analyze Wordlist Security")
|
| 77 |
+
|
| 78 |
+
# Slider for password entropy calculation
|
| 79 |
+
entropy_slider = st.slider(
|
| 80 |
+
"Select Entropy Multiplier",
|
| 81 |
+
min_value=1.0,
|
| 82 |
+
max_value=10.0,
|
| 83 |
+
value=3.0,
|
| 84 |
+
step=0.1
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Simulate password entropy calculation (simple calculation for demonstration)
|
| 88 |
+
entropy = np.log2(len(wordlist) ** entropy_slider)
|
| 89 |
+
st.write(f"Estimated Entropy: {entropy:.2f} bits")
|
| 90 |
+
|
| 91 |
+
# Showcase a mock security analysis (this would be expanded in your actual app)
|
| 92 |
+
if entropy < 50:
|
| 93 |
+
st.warning("Low entropy detected! This wordlist might be vulnerable to brute-force attacks.")
|
| 94 |
+
else:
|
| 95 |
+
st.success("Good entropy! This wordlist is secure against most brute-force attempts.")
|
| 96 |
+
|
| 97 |
+
# Footer
|
| 98 |
+
st.markdown("---")
|
| 99 |
+
st.markdown(
|
| 100 |
+
"Made with ❤️ by Canstralian. For more information on ReconNinja, visit our [GitHub](https://github.com/Canstralian)."
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|