reformat code
Browse files
app.py
CHANGED
|
@@ -7,7 +7,10 @@ import streamlit as st
|
|
| 7 |
|
| 8 |
|
| 9 |
GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code"
|
| 10 |
-
INCODER_IMG =
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
@st.cache()
|
| 13 |
def load_examples():
|
|
@@ -15,20 +18,34 @@ def load_examples():
|
|
| 15 |
examples = json.load(f)
|
| 16 |
return examples
|
| 17 |
|
|
|
|
| 18 |
def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
|
| 19 |
-
url =
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
return generated_text
|
| 23 |
-
|
|
|
|
| 24 |
st.set_page_config(page_icon=":laptop:", layout="wide")
|
| 25 |
|
| 26 |
st.sidebar.header("Models")
|
| 27 |
models = ["CodeParrot", "InCoder"]
|
| 28 |
-
selected_models = st.sidebar.multiselect(
|
|
|
|
|
|
|
| 29 |
|
| 30 |
st.sidebar.header("Tasks")
|
| 31 |
-
tasks = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
selected_task = st.sidebar.selectbox("Select a task", tasks)
|
| 33 |
|
| 34 |
|
|
@@ -37,25 +54,27 @@ if selected_task == " ":
|
|
| 37 |
with open("utils/intro.txt", "r") as f:
|
| 38 |
intro = f.read()
|
| 39 |
st.markdown(intro)
|
| 40 |
-
|
| 41 |
elif selected_task == "Pretraining datasets":
|
| 42 |
st.title("Pretraining datasets 📚")
|
| 43 |
-
st.markdown(
|
|
|
|
|
|
|
| 44 |
df = pd.read_csv("utils/data_preview.csv")
|
| 45 |
st.dataframe(df)
|
| 46 |
for model in selected_models:
|
| 47 |
with open(f"datasets/{model.lower()}.txt", "r") as f:
|
| 48 |
text = f.read()
|
| 49 |
st.markdown(f"### {model}")
|
| 50 |
-
st.markdown(text)
|
| 51 |
-
|
| 52 |
elif selected_task == "Model architecture":
|
| 53 |
st.title("Model architecture")
|
| 54 |
for model in selected_models:
|
| 55 |
with open(f"architectures/{model.lower()}.txt", "r") as f:
|
| 56 |
text = f.read()
|
| 57 |
st.markdown(f"## {model}")
|
| 58 |
-
st.markdown(text)
|
| 59 |
if model == "InCoder":
|
| 60 |
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
|
| 61 |
|
|
@@ -64,31 +83,49 @@ elif selected_task == "Model evaluation":
|
|
| 64 |
with open("evaluation/intro.txt", "r") as f:
|
| 65 |
intro = f.read()
|
| 66 |
st.markdown(intro)
|
| 67 |
-
|
| 68 |
elif selected_task == "Code generation":
|
| 69 |
st.title("Code generation 💻")
|
| 70 |
st.sidebar.header("Examples")
|
| 71 |
examples = load_examples()
|
| 72 |
example_names = [example["name"] for example in examples]
|
| 73 |
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
| 74 |
-
selected_example = st.sidebar.selectbox(
|
|
|
|
|
|
|
| 75 |
example_text = examples[name2id[selected_example]]["value"]
|
| 76 |
default_length = examples[name2id[selected_example]]["length"]
|
| 77 |
st.sidebar.header("Generation settings")
|
| 78 |
-
temperature = st.sidebar.slider(
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
if st.button("Generate code!"):
|
| 83 |
with st.spinner("Generating code..."):
|
| 84 |
# Create a multiprocessing Pool
|
| 85 |
-
pool = Pool()
|
| 86 |
-
generate_parallel=partial(
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
| 91 |
output = pool.map(generate_parallel, selected_models)
|
| 92 |
for i in range(len(output)):
|
| 93 |
st.markdown(f"**{selected_models[i]}**")
|
| 94 |
-
st.code(output[i])
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code"
|
| 10 |
+
INCODER_IMG = (
|
| 11 |
+
"https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png"
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
|
| 15 |
@st.cache()
|
| 16 |
def load_examples():
|
|
|
|
| 18 |
examples = json.load(f)
|
| 19 |
return examples
|
| 20 |
|
| 21 |
+
|
| 22 |
def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
|
| 23 |
+
url = (
|
| 24 |
+
f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
|
| 25 |
+
)
|
| 26 |
+
r = requests.post(
|
| 27 |
+
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
|
| 28 |
+
)
|
| 29 |
+
generated_text = r.json()["data"][0]
|
| 30 |
return generated_text
|
| 31 |
+
|
| 32 |
+
|
| 33 |
st.set_page_config(page_icon=":laptop:", layout="wide")
|
| 34 |
|
| 35 |
st.sidebar.header("Models")
|
| 36 |
models = ["CodeParrot", "InCoder"]
|
| 37 |
+
selected_models = st.sidebar.multiselect(
|
| 38 |
+
"Select code generation models to compare", models, default=["CodeParrot"]
|
| 39 |
+
)
|
| 40 |
|
| 41 |
st.sidebar.header("Tasks")
|
| 42 |
+
tasks = [
|
| 43 |
+
" ",
|
| 44 |
+
"Pretraining datasets",
|
| 45 |
+
"Model architecture",
|
| 46 |
+
"Model evaluation",
|
| 47 |
+
"Code generation",
|
| 48 |
+
]
|
| 49 |
selected_task = st.sidebar.selectbox("Select a task", tasks)
|
| 50 |
|
| 51 |
|
|
|
|
| 54 |
with open("utils/intro.txt", "r") as f:
|
| 55 |
intro = f.read()
|
| 56 |
st.markdown(intro)
|
| 57 |
+
|
| 58 |
elif selected_task == "Pretraining datasets":
|
| 59 |
st.title("Pretraining datasets 📚")
|
| 60 |
+
st.markdown(
|
| 61 |
+
f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
|
| 62 |
+
)
|
| 63 |
df = pd.read_csv("utils/data_preview.csv")
|
| 64 |
st.dataframe(df)
|
| 65 |
for model in selected_models:
|
| 66 |
with open(f"datasets/{model.lower()}.txt", "r") as f:
|
| 67 |
text = f.read()
|
| 68 |
st.markdown(f"### {model}")
|
| 69 |
+
st.markdown(text)
|
| 70 |
+
|
| 71 |
elif selected_task == "Model architecture":
|
| 72 |
st.title("Model architecture")
|
| 73 |
for model in selected_models:
|
| 74 |
with open(f"architectures/{model.lower()}.txt", "r") as f:
|
| 75 |
text = f.read()
|
| 76 |
st.markdown(f"## {model}")
|
| 77 |
+
st.markdown(text)
|
| 78 |
if model == "InCoder":
|
| 79 |
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
|
| 80 |
|
|
|
|
| 83 |
with open("evaluation/intro.txt", "r") as f:
|
| 84 |
intro = f.read()
|
| 85 |
st.markdown(intro)
|
| 86 |
+
|
| 87 |
elif selected_task == "Code generation":
|
| 88 |
st.title("Code generation 💻")
|
| 89 |
st.sidebar.header("Examples")
|
| 90 |
examples = load_examples()
|
| 91 |
example_names = [example["name"] for example in examples]
|
| 92 |
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
| 93 |
+
selected_example = st.sidebar.selectbox(
|
| 94 |
+
"Select one of the following examples or implement yours", example_names
|
| 95 |
+
)
|
| 96 |
example_text = examples[name2id[selected_example]]["value"]
|
| 97 |
default_length = examples[name2id[selected_example]]["length"]
|
| 98 |
st.sidebar.header("Generation settings")
|
| 99 |
+
temperature = st.sidebar.slider(
|
| 100 |
+
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
|
| 101 |
+
)
|
| 102 |
+
max_new_tokens = st.sidebar.slider(
|
| 103 |
+
"Number of tokens to generate:",
|
| 104 |
+
value=default_length,
|
| 105 |
+
min_value=8,
|
| 106 |
+
step=8,
|
| 107 |
+
max_value=256,
|
| 108 |
+
)
|
| 109 |
+
seed = st.sidebar.slider(
|
| 110 |
+
"Random seed:", value=42, min_value=0, step=1, max_value=1000
|
| 111 |
+
)
|
| 112 |
+
gen_prompt = st.text_area(
|
| 113 |
+
"Generate code with prompt:",
|
| 114 |
+
value=example_text,
|
| 115 |
+
height=220,
|
| 116 |
+
).strip()
|
| 117 |
if st.button("Generate code!"):
|
| 118 |
with st.spinner("Generating code..."):
|
| 119 |
# Create a multiprocessing Pool
|
| 120 |
+
pool = Pool()
|
| 121 |
+
generate_parallel = partial(
|
| 122 |
+
generate_code,
|
| 123 |
+
gen_prompt=gen_prompt,
|
| 124 |
+
max_new_tokens=max_new_tokens,
|
| 125 |
+
temperature=temperature,
|
| 126 |
+
seed=seed,
|
| 127 |
+
)
|
| 128 |
output = pool.map(generate_parallel, selected_models)
|
| 129 |
for i in range(len(output)):
|
| 130 |
st.markdown(f"**{selected_models[i]}**")
|
| 131 |
+
st.code(output[i])
|