make blog
Browse files
app.py
CHANGED
|
@@ -10,7 +10,7 @@ GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code"
|
|
| 10 |
INCODER_IMG = (
|
| 11 |
"https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png"
|
| 12 |
)
|
| 13 |
-
|
| 14 |
|
| 15 |
@st.cache()
|
| 16 |
def load_examples():
|
|
@@ -32,100 +32,92 @@ def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
|
|
| 32 |
|
| 33 |
st.set_page_config(page_icon=":laptop:", layout="wide")
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
selected_models = st.sidebar.multiselect(
|
| 38 |
-
"Select code generation models to compare",
|
| 39 |
)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
"
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
]
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
with open("evaluation/intro.txt", "r") as f:
|
| 84 |
-
intro = f.read()
|
| 85 |
-
st.markdown(intro)
|
| 86 |
-
|
| 87 |
-
elif selected_task == "Code generation":
|
| 88 |
-
st.title("Code generation 💻")
|
| 89 |
-
st.sidebar.header("Examples")
|
| 90 |
-
examples = load_examples()
|
| 91 |
-
example_names = [example["name"] for example in examples]
|
| 92 |
-
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
| 93 |
-
selected_example = st.sidebar.selectbox(
|
| 94 |
-
"Select one of the following examples or implement yours", example_names
|
| 95 |
-
)
|
| 96 |
-
example_text = examples[name2id[selected_example]]["value"]
|
| 97 |
-
default_length = examples[name2id[selected_example]]["length"]
|
| 98 |
-
st.sidebar.header("Generation settings")
|
| 99 |
-
temperature = st.sidebar.slider(
|
| 100 |
-
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
|
| 101 |
-
)
|
| 102 |
-
max_new_tokens = st.sidebar.slider(
|
| 103 |
-
"Number of tokens to generate:",
|
| 104 |
-
value=default_length,
|
| 105 |
-
min_value=8,
|
| 106 |
-
step=8,
|
| 107 |
-
max_value=256,
|
| 108 |
-
)
|
| 109 |
-
seed = st.sidebar.slider(
|
| 110 |
-
"Random seed:", value=42, min_value=0, step=1, max_value=1000
|
| 111 |
-
)
|
| 112 |
-
gen_prompt = st.text_area(
|
| 113 |
-
"Generate code with prompt:",
|
| 114 |
-
value=example_text,
|
| 115 |
-
height=220,
|
| 116 |
-
).strip()
|
| 117 |
-
if st.button("Generate code!"):
|
| 118 |
-
with st.spinner("Generating code..."):
|
| 119 |
-
# Create a multiprocessing Pool
|
| 120 |
-
pool = Pool()
|
| 121 |
-
generate_parallel = partial(
|
| 122 |
-
generate_code,
|
| 123 |
-
gen_prompt=gen_prompt,
|
| 124 |
-
max_new_tokens=max_new_tokens,
|
| 125 |
-
temperature=temperature,
|
| 126 |
-
seed=seed,
|
| 127 |
-
)
|
| 128 |
-
output = pool.map(generate_parallel, selected_models)
|
| 129 |
-
for i in range(len(output)):
|
| 130 |
-
st.markdown(f"**{selected_models[i]}**")
|
| 131 |
-
st.code(output[i])
|
|
|
|
| 10 |
INCODER_IMG = (
|
| 11 |
"https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png"
|
| 12 |
)
|
| 13 |
+
MODELS = ["CodeParrot", "InCoder"]
|
| 14 |
|
| 15 |
@st.cache()
|
| 16 |
def load_examples():
|
|
|
|
| 32 |
|
| 33 |
st.set_page_config(page_icon=":laptop:", layout="wide")
|
| 34 |
|
| 35 |
+
# Introduction
|
| 36 |
+
st.title("Code generation with 🤗")
|
| 37 |
+
with open("utils/intro.txt", "r") as f:
|
| 38 |
+
intro = f.read()
|
| 39 |
+
st.markdown(intro)
|
| 40 |
+
|
| 41 |
+
# Pretraining datasets
|
| 42 |
+
st.title("1 - Pretraining datasets 📚")
|
| 43 |
+
st.markdown(
|
| 44 |
+
f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
|
| 45 |
+
)
|
| 46 |
+
df = pd.read_csv("utils/data_preview.csv")
|
| 47 |
+
st.dataframe(df)
|
| 48 |
+
st.header("Model")
|
| 49 |
+
selected_model = st.selectbox(
|
| 50 |
+
"Select a code generation model", MODELS, default=["CodeParrot"]
|
| 51 |
+
)
|
| 52 |
+
with open(f"datasets/{selected_model.lower()}.txt", "r") as f:
|
| 53 |
+
text = f.read()
|
| 54 |
+
st.markdown(text)
|
| 55 |
+
|
| 56 |
+
# Model architecture
|
| 57 |
+
st.title("Model architecture")
|
| 58 |
+
st.markdow("Most code generation models use GPT style architectures trained on code. Some use encoder-decoder architectures such as AlphaCode.")
|
| 59 |
+
st.header("Model")
|
| 60 |
+
selected_model = st.selectbox(
|
| 61 |
+
"Select a code generation model", MODELS, default=["CodeParrot"]
|
| 62 |
+
)
|
| 63 |
+
with open(f"architectures/{selected_model.lower()}.txt", "r") as f:
|
| 64 |
+
text = f.read()
|
| 65 |
+
st.markdown(text)
|
| 66 |
+
if model == "InCoder":
|
| 67 |
+
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
|
| 68 |
+
|
| 69 |
+
# Model evaluation
|
| 70 |
+
st.title("Code models evaluation 📊")
|
| 71 |
+
with open("evaluation/intro.txt", "r") as f:
|
| 72 |
+
intro = f.read()
|
| 73 |
+
st.markdown(intro)
|
| 74 |
+
|
| 75 |
+
# Code generation
|
| 76 |
+
st.title("Code generation 💻")
|
| 77 |
+
st.header("Models")
|
| 78 |
selected_models = st.sidebar.multiselect(
|
| 79 |
+
"Select code generation models to compare", MODELS, default=["CodeParrot"]
|
| 80 |
)
|
| 81 |
+
st.header("Examples")
|
| 82 |
+
examples = load_examples()
|
| 83 |
+
example_names = [example["name"] for example in examples]
|
| 84 |
+
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
| 85 |
+
selected_example = st.selectbox(
|
| 86 |
+
"Select one of the following examples or implement yours", example_names
|
| 87 |
+
)
|
| 88 |
+
example_text = examples[name2id[selected_example]]["value"]
|
| 89 |
+
default_length = examples[name2id[selected_example]]["length"]
|
| 90 |
+
st.header("Generation settings")
|
| 91 |
+
temperature = st.slider(
|
| 92 |
+
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
|
| 93 |
+
)
|
| 94 |
+
max_new_tokens = st.slider(
|
| 95 |
+
"Number of tokens to generate:",
|
| 96 |
+
value=default_length,
|
| 97 |
+
min_value=8,
|
| 98 |
+
step=8,
|
| 99 |
+
max_value=256,
|
| 100 |
+
)
|
| 101 |
+
seed = st.slider(
|
| 102 |
+
"Random seed:", value=42, min_value=0, step=1, max_value=1000
|
| 103 |
+
)
|
| 104 |
+
gen_prompt = st.text_area(
|
| 105 |
+
"Generate code with prompt:",
|
| 106 |
+
value=example_text,
|
| 107 |
+
height=220,
|
| 108 |
+
).strip()
|
| 109 |
+
if st.button("Generate code!"):
|
| 110 |
+
with st.spinner("Generating code..."):
|
| 111 |
+
# Create a multiprocessing Pool
|
| 112 |
+
pool = Pool()
|
| 113 |
+
generate_parallel = partial(
|
| 114 |
+
generate_code,
|
| 115 |
+
gen_prompt=gen_prompt,
|
| 116 |
+
max_new_tokens=max_new_tokens,
|
| 117 |
+
temperature=temperature,
|
| 118 |
+
seed=seed,
|
| 119 |
+
)
|
| 120 |
+
output = pool.map(generate_parallel, selected_models)
|
| 121 |
+
for i in range(len(output)):
|
| 122 |
+
st.markdown(f"**{selected_models[i]}**")
|
| 123 |
+
st.code(output[i])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|