|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import requests | 
					
						
						|  | import threading | 
					
						
						|  | import streamlit as st | 
					
						
						|  | from datasets import load_dataset, load_metric | 
					
						
						|  |  | 
					
						
						|  | MODELS = ["CodeParrot", "InCoder", "CodeGen", "PolyCoder"] | 
					
						
						|  | GENERATION_MODELS = ["CodeParrot", "InCoder", "CodeGen"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @st.cache() | 
					
						
						|  | def load_examples(): | 
					
						
						|  | with open("utils/examples.json", "r") as f: | 
					
						
						|  | examples = json.load(f) | 
					
						
						|  | return examples | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_evaluation(): | 
					
						
						|  |  | 
					
						
						|  | os.environ["HF_ALLOW_CODE_EVAL"] = "1" | 
					
						
						|  | human_eval = load_dataset("openai_humaneval") | 
					
						
						|  | entry_point = f"check({human_eval['test'][2]['entry_point']})" | 
					
						
						|  | test_func = "\n" + human_eval["test"][2]["test"] + "\n" + entry_point | 
					
						
						|  | code_eval = load_metric("code_eval") | 
					
						
						|  | return code_eval, test_func | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def read_markdown(path): | 
					
						
						|  | with open(path, "r") as f: | 
					
						
						|  | output = f.read() | 
					
						
						|  | st.markdown(output, unsafe_allow_html=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_code( | 
					
						
						|  | generations, model_name, gen_prompt, max_new_tokens, temperature, seed | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | url = ( | 
					
						
						|  | f"https://hf.space/embed/codeparrot/{model_name.lower()}-subspace/+/api/predict/" | 
					
						
						|  | ) | 
					
						
						|  | r = requests.post( | 
					
						
						|  | url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]} | 
					
						
						|  | ) | 
					
						
						|  | generated_text = r.json()["data"][0] | 
					
						
						|  | generations.append({model_name: generated_text}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_code_threads( | 
					
						
						|  | generations, models, gen_prompt, max_new_tokens, temperature, seed | 
					
						
						|  | ): | 
					
						
						|  | threads = [] | 
					
						
						|  | for model_name in models: | 
					
						
						|  |  | 
					
						
						|  | threads.append( | 
					
						
						|  | threading.Thread( | 
					
						
						|  | target=generate_code, | 
					
						
						|  | args=( | 
					
						
						|  | generations, | 
					
						
						|  | model_name, | 
					
						
						|  | gen_prompt, | 
					
						
						|  | max_new_tokens, | 
					
						
						|  | temperature, | 
					
						
						|  | seed, | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | threads[-1].start() | 
					
						
						|  |  | 
					
						
						|  | for t in threads: | 
					
						
						|  | t.join() | 
					
						
						|  |  | 
					
						
						|  | @st.cache(show_spinner=False) | 
					
						
						|  | def generate_teaser(gen_prompt): | 
					
						
						|  | generations = [] | 
					
						
						|  | generate_code(generations, "CodeParrot", gen_prompt, 8, 0.2, 42) | 
					
						
						|  | return generations[0]["CodeParrot"] | 
					
						
						|  |  | 
					
						
						|  | st.set_page_config(page_icon=":laptop:", layout="wide") | 
					
						
						|  | with open("utils/table_contents.md", "r") as f: | 
					
						
						|  | contents = f.read() | 
					
						
						|  |  | 
					
						
						|  | st.sidebar.markdown(contents) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | st.title("Code generation with 🤗") | 
					
						
						|  | read_markdown("utils/summary.md") | 
					
						
						|  |  | 
					
						
						|  | example_text = "def print_hello_world():" | 
					
						
						|  | col1, col2, col3 = st.columns([1, 2, 1]) | 
					
						
						|  | with col2: | 
					
						
						|  | gen_prompt = st.text_area( | 
					
						
						|  | "", | 
					
						
						|  | value=example_text, | 
					
						
						|  | height=100, | 
					
						
						|  | ).strip() | 
					
						
						|  | if st.button("Generate code!", key=1): | 
					
						
						|  | with st.spinner("Generating code..."): | 
					
						
						|  | st.code(generate_teaser(gen_prompt)) | 
					
						
						|  | read_markdown("utils/intro.md") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | st.subheader("1 - Code datasets") | 
					
						
						|  | read_markdown("datasets/intro.md") | 
					
						
						|  | read_markdown("datasets/github_code.md") | 
					
						
						|  | col1, col2 = st.columns([1, 2]) | 
					
						
						|  | with col1: | 
					
						
						|  | selected_model = st.selectbox("", MODELS, key=1) | 
					
						
						|  | read_markdown(f"datasets/{selected_model.lower()}.md") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | st.subheader("2 - Model architecture") | 
					
						
						|  | read_markdown("architectures/intro.md") | 
					
						
						|  | col1, col2 = st.columns([1, 2]) | 
					
						
						|  | with col1: | 
					
						
						|  | selected_model = st.selectbox("", MODELS, key=2) | 
					
						
						|  | read_markdown(f"architectures/{selected_model.lower()}.md") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | st.subheader("3 - Code model evaluation") | 
					
						
						|  | read_markdown("evaluation/intro.md") | 
					
						
						|  | read_markdown("evaluation/demo_humaneval.md") | 
					
						
						|  |  | 
					
						
						|  | st.markdown("Below you can try solving this problem or visualize the solution of CodeParrot:") | 
					
						
						|  | with open("evaluation/problem.md", "r") as f: | 
					
						
						|  | problem = f.read() | 
					
						
						|  | with open("evaluation/solution.md", "r") as f: | 
					
						
						|  | solution = f.read() | 
					
						
						|  |  | 
					
						
						|  | candidate_solution = st.text_area( | 
					
						
						|  | "Complete the problem:", | 
					
						
						|  | value=problem, | 
					
						
						|  | height=240, | 
					
						
						|  | ).strip() | 
					
						
						|  | if st.button("Test my solution", key=2): | 
					
						
						|  | with st.spinner("Testing..."): | 
					
						
						|  | code_eval, test_func = load_evaluation() | 
					
						
						|  | test_cases = [test_func] | 
					
						
						|  | candidates = [[candidate_solution]] | 
					
						
						|  | pass_at_k, _ = code_eval.compute(references=test_cases, predictions=candidates) | 
					
						
						|  | text = "Your solution didn't pass the test, pass@1 is 0 😕" if pass_at_k['pass@1'] < 1  else "Congrats your pass@1 is 1! 🎉" | 
					
						
						|  | st.markdown(text) | 
					
						
						|  | if st.button("Show model solution", key=3): | 
					
						
						|  | st.markdown(solution) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | st.subheader("4 - Code generation ✨") | 
					
						
						|  | read_markdown("generation/intro.md") | 
					
						
						|  | col1, col2, col3 = st.columns([7, 1, 6]) | 
					
						
						|  | with col1: | 
					
						
						|  | st.markdown("**Models**") | 
					
						
						|  | selected_models = st.multiselect( | 
					
						
						|  | "Select code generation models to compare:", | 
					
						
						|  | GENERATION_MODELS, | 
					
						
						|  | default=GENERATION_MODELS, | 
					
						
						|  | key=3, | 
					
						
						|  | ) | 
					
						
						|  | st.markdown(" ") | 
					
						
						|  | st.markdown("**Examples**") | 
					
						
						|  | examples = load_examples() | 
					
						
						|  | example_names = [example["name"] for example in examples] | 
					
						
						|  | name2id = dict([(name, i) for i, name in enumerate(example_names)]) | 
					
						
						|  | selected_example = st.selectbox( | 
					
						
						|  | "Select one of the following examples or implement yours:", example_names | 
					
						
						|  | ) | 
					
						
						|  | example_text = examples[name2id[selected_example]]["value"] | 
					
						
						|  | default_length = examples[name2id[selected_example]]["length"] | 
					
						
						|  | with col3: | 
					
						
						|  | st.markdown("**Generation settings**") | 
					
						
						|  | temperature = st.slider( | 
					
						
						|  | "Temperature:", value=0.2, min_value=0.1, step=0.1, max_value=2.0 | 
					
						
						|  | ) | 
					
						
						|  | max_new_tokens = st.slider( | 
					
						
						|  | "Number of tokens to generate:", | 
					
						
						|  | value=default_length, | 
					
						
						|  | min_value=8, | 
					
						
						|  | step=4, | 
					
						
						|  | max_value=256, | 
					
						
						|  | ) | 
					
						
						|  | seed = st.slider("Random seed:", value=42, min_value=0, step=1, max_value=1000) | 
					
						
						|  | gen_prompt = st.text_area( | 
					
						
						|  | "Generate code with prompt:", | 
					
						
						|  | value=example_text, | 
					
						
						|  | height=200, | 
					
						
						|  | ).strip() | 
					
						
						|  | if st.button("Generate code!", key=4): | 
					
						
						|  | with st.spinner("Generating code..."): | 
					
						
						|  |  | 
					
						
						|  | generations = [] | 
					
						
						|  | generate_code_threads( | 
					
						
						|  | generations, | 
					
						
						|  | selected_models, | 
					
						
						|  | gen_prompt=gen_prompt, | 
					
						
						|  | max_new_tokens=max_new_tokens, | 
					
						
						|  | temperature=temperature, | 
					
						
						|  | seed=seed, | 
					
						
						|  | ) | 
					
						
						|  | for i in range(len(generations)): | 
					
						
						|  | st.markdown(f"**{selected_models[i]}**") | 
					
						
						|  | for j in range(len(generations)): | 
					
						
						|  | if selected_models[i] in generations[j].keys(): | 
					
						
						|  | st.code(generations[j][selected_models[i]]) | 
					
						
						|  | if len(generations) < len(selected_models): | 
					
						
						|  | st.markdown("<span style='color:red'>Warning: Some models run into timeout, try another time or reduce the Number of tokens to generate. You can also try generating code using the original subspaces: [InCoder](https://huggingface.co/spaces/loubnabnl/incoder-subspace), [CodeGen](https://huggingface.co/spaces/loubnabnl/codegen-subspace), [CodeParrot](https://huggingface.co/spaces/loubnabnl/codeparrot-subspace)</span>", unsafe_allow_html=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | st.subheader("Resources") | 
					
						
						|  | read_markdown("utils/resources.md") | 
					
						
						|  |  |