Spaces:
Running
Running
Try to report memory errors, and try clearing the traceback to avoid leaking the prior cache.
Browse files- custom_llm_inference.py +23 -0
custom_llm_inference.py
CHANGED
|
@@ -2,6 +2,25 @@ import torch
|
|
| 2 |
from transformers.cache_utils import DynamicCache
|
| 3 |
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
def get_tokenized_chat(tokenizer, prompt, doc):
|
| 6 |
messages = [
|
| 7 |
{
|
|
@@ -28,6 +47,7 @@ def tokenize_doc_in_progress(tokenizer, doc_in_progress):
|
|
| 28 |
return doc_in_progress_ids
|
| 29 |
|
| 30 |
|
|
|
|
| 31 |
def get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k):
|
| 32 |
tokenized_chat = get_tokenized_chat(tokenizer, prompt, doc)
|
| 33 |
assert len(tokenized_chat.shape) == 1
|
|
@@ -63,6 +83,7 @@ def get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k):
|
|
| 63 |
return highlights
|
| 64 |
|
| 65 |
|
|
|
|
| 66 |
def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, device):
|
| 67 |
"""
|
| 68 |
For each of the n_branch_tokens next tokens, generate most-likely next tokens and append back on.
|
|
@@ -113,6 +134,7 @@ def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, devic
|
|
| 113 |
return lookahead_sequences, next_token_logits
|
| 114 |
|
| 115 |
|
|
|
|
| 116 |
def get_next_token_predictions_inner(
|
| 117 |
model, tokenizer, original_doc, prompt, doc_in_progress, k):
|
| 118 |
|
|
@@ -145,6 +167,7 @@ def get_next_token_predictions_inner(
|
|
| 145 |
return decoded_next_tokens, next_token_logits
|
| 146 |
|
| 147 |
|
|
|
|
| 148 |
def get_next_token_predictions_slow(
|
| 149 |
model, tokenizer, original_doc, prompt, doc_in_progress, k):
|
| 150 |
|
|
|
|
| 2 |
from transformers.cache_utils import DynamicCache
|
| 3 |
|
| 4 |
|
| 5 |
+
def catch_and_report_memory_exceptions(func):
|
| 6 |
+
"""
|
| 7 |
+
Decorator to catch and report memory exceptions.
|
| 8 |
+
"""
|
| 9 |
+
def wrapper(*args, **kwargs):
|
| 10 |
+
# https://docs.pytorch.org/docs/stable/torch_cuda_memory.html
|
| 11 |
+
torch.cuda.memory._record_memory_history()
|
| 12 |
+
try:
|
| 13 |
+
return func(*args, **kwargs)
|
| 14 |
+
except torch.OutOfMemoryError as e:
|
| 15 |
+
torch.cuda.memory._dump_snapshot("memory_snapshot.pickle")
|
| 16 |
+
print(f"Memory error: {e}")
|
| 17 |
+
# clear frames in the traceback to avoid memory leak
|
| 18 |
+
import traceback, sys
|
| 19 |
+
traceback.clear_frames(sys.exc_info()[2])
|
| 20 |
+
raise e
|
| 21 |
+
return wrapper
|
| 22 |
+
|
| 23 |
+
|
| 24 |
def get_tokenized_chat(tokenizer, prompt, doc):
|
| 25 |
messages = [
|
| 26 |
{
|
|
|
|
| 47 |
return doc_in_progress_ids
|
| 48 |
|
| 49 |
|
| 50 |
+
@catch_and_report_memory_exceptions
|
| 51 |
def get_highlights_inner(model, tokenizer, doc, prompt, updated_doc, k):
|
| 52 |
tokenized_chat = get_tokenized_chat(tokenizer, prompt, doc)
|
| 53 |
assert len(tokenized_chat.shape) == 1
|
|
|
|
| 83 |
return highlights
|
| 84 |
|
| 85 |
|
| 86 |
+
@catch_and_report_memory_exceptions
|
| 87 |
def get_lookahead_sequences(model, tokenizer, hypotheses, n_branch_tokens, device):
|
| 88 |
"""
|
| 89 |
For each of the n_branch_tokens next tokens, generate most-likely next tokens and append back on.
|
|
|
|
| 134 |
return lookahead_sequences, next_token_logits
|
| 135 |
|
| 136 |
|
| 137 |
+
@catch_and_report_memory_exceptions
|
| 138 |
def get_next_token_predictions_inner(
|
| 139 |
model, tokenizer, original_doc, prompt, doc_in_progress, k):
|
| 140 |
|
|
|
|
| 167 |
return decoded_next_tokens, next_token_logits
|
| 168 |
|
| 169 |
|
| 170 |
+
@catch_and_report_memory_exceptions
|
| 171 |
def get_next_token_predictions_slow(
|
| 172 |
model, tokenizer, original_doc, prompt, doc_in_progress, k):
|
| 173 |
|