Spaces:
Running
Running
Bokeh figure - changed font, activated tools and tickers
Browse files- analyze_winscore.py +7 -7
analyze_winscore.py
CHANGED
|
@@ -4,9 +4,8 @@ import csv
|
|
| 4 |
import random
|
| 5 |
import numpy as np
|
| 6 |
from bokeh.plotting import figure
|
| 7 |
-
from bokeh.models import LabelSet, LogScale
|
| 8 |
from bokeh.palettes import Turbo256 # A color palette with enough colors
|
| 9 |
-
from bokeh.models import ColumnDataSource
|
| 10 |
|
| 11 |
# Function to fit a polynomial curve and return the x and y values of the fitted curve
|
| 12 |
def fit_curve(x, y, degree=1):
|
|
@@ -57,7 +56,7 @@ def get_ldb_records(name_map, csv_file_path):
|
|
| 57 |
return ldb_records
|
| 58 |
|
| 59 |
def create_scatter_plot_with_curve_with_variances_named(category, variance_across_categories, x, y, sizes, model_names, ldb_records):
|
| 60 |
-
FONTSIZE =
|
| 61 |
|
| 62 |
# Remove outliers
|
| 63 |
x_filtered, y_filtered, x_outliers, y_outliers = remove_outliers(x, y)
|
|
@@ -129,7 +128,8 @@ def create_scatter_plot_with_curve_with_variances_named(category, variance_acros
|
|
| 129 |
sizing_mode="stretch_width",
|
| 130 |
height=800,
|
| 131 |
#title=f"{category} vs Model Size vs Variance Across Categories",
|
| 132 |
-
|
|
|
|
| 133 |
tooltips=[
|
| 134 |
("Model", "@model_names"),
|
| 135 |
("Model Size (B parameters)", "@sizes"),
|
|
@@ -152,10 +152,10 @@ def create_scatter_plot_with_curve_with_variances_named(category, variance_acros
|
|
| 152 |
|
| 153 |
# Add labels (with slight offset to avoid overlap)
|
| 154 |
p.add_layout(LabelSet(x='x', y='y', text='model_names', source=source_filtered,
|
| 155 |
-
x_offset=5, y_offset=8, text_font_size=f"{FONTSIZE-
|
| 156 |
|
| 157 |
p.add_layout(LabelSet(x='x', y='y', text='model_names', source=source_outliers,
|
| 158 |
-
x_offset=5, y_offset=8, text_font_size=f"{FONTSIZE-
|
| 159 |
|
| 160 |
|
| 161 |
# Set axis labels
|
|
@@ -178,7 +178,7 @@ def create_scatter_plot_with_curve_with_variances_named(category, variance_acros
|
|
| 178 |
|
| 179 |
p.x_scale = LogScale()
|
| 180 |
|
| 181 |
-
p.xaxis.ticker =
|
| 182 |
p.xaxis.axis_label_text_font_style = "normal"
|
| 183 |
p.yaxis.axis_label_text_font_style = "normal"
|
| 184 |
|
|
|
|
| 4 |
import random
|
| 5 |
import numpy as np
|
| 6 |
from bokeh.plotting import figure
|
| 7 |
+
from bokeh.models import LabelSet, LogScale, ColumnDataSource, tickers
|
| 8 |
from bokeh.palettes import Turbo256 # A color palette with enough colors
|
|
|
|
| 9 |
|
| 10 |
# Function to fit a polynomial curve and return the x and y values of the fitted curve
|
| 11 |
def fit_curve(x, y, degree=1):
|
|
|
|
| 56 |
return ldb_records
|
| 57 |
|
| 58 |
def create_scatter_plot_with_curve_with_variances_named(category, variance_across_categories, x, y, sizes, model_names, ldb_records):
|
| 59 |
+
FONTSIZE = 12
|
| 60 |
|
| 61 |
# Remove outliers
|
| 62 |
x_filtered, y_filtered, x_outliers, y_outliers = remove_outliers(x, y)
|
|
|
|
| 128 |
sizing_mode="stretch_width",
|
| 129 |
height=800,
|
| 130 |
#title=f"{category} vs Model Size vs Variance Across Categories",
|
| 131 |
+
tools="pan,wheel_zoom,box_zoom,save,reset",
|
| 132 |
+
active_scroll="wheel_zoom",
|
| 133 |
tooltips=[
|
| 134 |
("Model", "@model_names"),
|
| 135 |
("Model Size (B parameters)", "@sizes"),
|
|
|
|
| 152 |
|
| 153 |
# Add labels (with slight offset to avoid overlap)
|
| 154 |
p.add_layout(LabelSet(x='x', y='y', text='model_names', source=source_filtered,
|
| 155 |
+
x_offset=5, y_offset=8, text_font_size=f"{FONTSIZE-2}pt", text_color='black'))
|
| 156 |
|
| 157 |
p.add_layout(LabelSet(x='x', y='y', text='model_names', source=source_outliers,
|
| 158 |
+
x_offset=5, y_offset=8, text_font_size=f"{FONTSIZE-2}pt", text_color='black'))
|
| 159 |
|
| 160 |
|
| 161 |
# Set axis labels
|
|
|
|
| 178 |
|
| 179 |
p.x_scale = LogScale()
|
| 180 |
|
| 181 |
+
p.xaxis.ticker = tickers.LogTicker()
|
| 182 |
p.xaxis.axis_label_text_font_style = "normal"
|
| 183 |
p.yaxis.axis_label_text_font_style = "normal"
|
| 184 |
|