Spaces:
Runtime error
Runtime error
Commit
·
a0aa771
1
Parent(s):
af7ac2b
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from hyper_parameters import tacotron_params as hparams
|
| 4 |
+
from training import load_model
|
| 5 |
+
|
| 6 |
+
from audio_processing import griffin_lim
|
| 7 |
+
from nn_layers import TacotronSTFT
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
from text import text_to_sequence
|
| 11 |
+
from hifigan.env import AttrDict
|
| 12 |
+
from examples_taco2 import *
|
| 13 |
+
|
| 14 |
+
from hifigan.models import Generator
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import numpy as np
|
| 18 |
+
import json
|
| 19 |
+
import os
|
| 20 |
+
|
| 21 |
+
from matplotlib import pyplot as plt
|
| 22 |
+
|
| 23 |
+
# Adjust vertical spacing between subplots
|
| 24 |
+
plt.subplots_adjust(hspace=0.15) # You can adjust the value as needed
|
| 25 |
+
|
| 26 |
+
# Adjust the white space (margins) around the plot
|
| 27 |
+
plt.tight_layout(pad=0.5) # You can adjust the pad value as needed
|
| 28 |
+
|
| 29 |
+
torch.manual_seed(1234)
|
| 30 |
+
MAX_WAV_VALUE = 32768.0
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def load_checkpoint(filepath, device):
|
| 34 |
+
assert os.path.isfile(filepath)
|
| 35 |
+
print("Loading '{}'".format(filepath))
|
| 36 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
| 37 |
+
print("Complete.")
|
| 38 |
+
return checkpoint_dict
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def plot_spec_align_sep(mel, align):
|
| 42 |
+
plt.figure(figsize=(4, 3))
|
| 43 |
+
|
| 44 |
+
fig_mel = plt.figure()
|
| 45 |
+
ax_mel = fig_mel.add_subplot(111)
|
| 46 |
+
fig_mel.tight_layout()
|
| 47 |
+
ax_mel.imshow(mel)
|
| 48 |
+
# fig_mel.set_title('Mel-Scale Spectrogram', fontsize=12)
|
| 49 |
+
|
| 50 |
+
fig_align = plt.figure()
|
| 51 |
+
ax_align = fig_align.add_subplot(111) # fig_align
|
| 52 |
+
fig_align.tight_layout()
|
| 53 |
+
ax_align.imshow(align)
|
| 54 |
+
# fig_align.set_title('Alignment', fontsize=12)
|
| 55 |
+
|
| 56 |
+
return fig_mel, fig_align
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# load trained tacotron2 + GST model:
|
| 60 |
+
model = load_model(hparams)
|
| 61 |
+
checkpoint_path = "models/checkpoint_78000.model"
|
| 62 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location="cpu")['state_dict'])
|
| 63 |
+
# model.to('cuda')
|
| 64 |
+
_ = model.eval()
|
| 65 |
+
|
| 66 |
+
# load pre-trained HiFi-GAN model for mel2audio:
|
| 67 |
+
hifigan_checkpoint_path = "models/generator_v1"
|
| 68 |
+
config_file = os.path.join(os.path.split(hifigan_checkpoint_path)[0], 'config.json')
|
| 69 |
+
with open(config_file) as f:
|
| 70 |
+
data = f.read()
|
| 71 |
+
json_config = json.loads(data)
|
| 72 |
+
h = AttrDict(json_config)
|
| 73 |
+
device = torch.device("cpu")
|
| 74 |
+
|
| 75 |
+
generator = Generator(h).to(device)
|
| 76 |
+
|
| 77 |
+
state_dict_g = load_checkpoint(hifigan_checkpoint_path, device)
|
| 78 |
+
generator.load_state_dict(state_dict_g['generator'])
|
| 79 |
+
generator.eval()
|
| 80 |
+
generator.remove_weight_norm()
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def synthesize(text, gst_1, gst_2, gst_3, voc):
|
| 84 |
+
sequence = np.array(text_to_sequence(text, ['english_cleaners']))[None, :]
|
| 85 |
+
sequence = torch.from_numpy(sequence).to(device='cpu', dtype=torch.int64)
|
| 86 |
+
|
| 87 |
+
# gst_head_scores = np.array([0.5, 0.15, 0.35])
|
| 88 |
+
gst_head_scores = np.array([gst_1, gst_2, gst_3])
|
| 89 |
+
gst_scores = torch.from_numpy(gst_head_scores).float()
|
| 90 |
+
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence, gst_scores)
|
| 93 |
+
|
| 94 |
+
if voc == 0:
|
| 95 |
+
# mel2wav inference:
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
y_g_hat = generator(mel_outputs_postnet)
|
| 98 |
+
audio = y_g_hat.squeeze()
|
| 99 |
+
audio = audio * MAX_WAV_VALUE
|
| 100 |
+
audio_numpy = audio.cpu().numpy().astype('int16')
|
| 101 |
+
# audio = vocoder_model.inference(mel_outputs_postnet)
|
| 102 |
+
# audio_numpy = audio.data.cpu().detach().numpy()
|
| 103 |
+
|
| 104 |
+
else:
|
| 105 |
+
# Griffin Lim vocoder synthesis:
|
| 106 |
+
griffin_iters = 60
|
| 107 |
+
taco_stft = TacotronSTFT(hparams['filter_length'], hparams['hop_length'], hparams['win_length'],
|
| 108 |
+
sampling_rate=hparams['sampling_rate'])
|
| 109 |
+
|
| 110 |
+
mel_decompress = taco_stft.spectral_de_normalize(mel_outputs_postnet)
|
| 111 |
+
mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
|
| 112 |
+
|
| 113 |
+
spec_from_mel_scaling = 60
|
| 114 |
+
spec_from_mel = torch.mm(mel_decompress[0], taco_stft.mel_basis)
|
| 115 |
+
spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
|
| 116 |
+
spec_from_mel = spec_from_mel * spec_from_mel_scaling
|
| 117 |
+
|
| 118 |
+
audio = griffin_lim(torch.autograd.Variable(spec_from_mel[:, :, :-1]), taco_stft.stft_fn, griffin_iters)
|
| 119 |
+
|
| 120 |
+
audio = audio.squeeze()
|
| 121 |
+
audio_numpy = audio.cpu().numpy()
|
| 122 |
+
|
| 123 |
+
# prepare plot for the output:
|
| 124 |
+
mel_outputs_postnet = torch.flip(mel_outputs_postnet.squeeze(), [0])
|
| 125 |
+
mel_outputs_postnet = mel_outputs_postnet.detach().numpy()
|
| 126 |
+
alignments = alignments.squeeze().T.detach().numpy()
|
| 127 |
+
|
| 128 |
+
# normalize numpy arrays between [-1, 1]
|
| 129 |
+
min_val = np.min(mel_outputs_postnet)
|
| 130 |
+
max_val = np.max(mel_outputs_postnet)
|
| 131 |
+
scaled_mel = (mel_outputs_postnet - min_val) / (max_val - min_val)
|
| 132 |
+
normalized_mel = 2 * scaled_mel - 1
|
| 133 |
+
|
| 134 |
+
min_val = np.min(alignments)
|
| 135 |
+
max_val = np.max(alignments)
|
| 136 |
+
scaled_align = (alignments - min_val) / (max_val - min_val)
|
| 137 |
+
normalized_align = 2 * scaled_align - 1
|
| 138 |
+
|
| 139 |
+
aw = gr.make_waveform((22050, audio_numpy), bg_image='background_images/wallpaper_test_1_crop_3.jpg',
|
| 140 |
+
bars_color=('#f3df4b', '#63edb7'), bar_count=100, bar_width=0.7, animate=True)
|
| 141 |
+
|
| 142 |
+
return aw, normalized_mel, normalized_align # (22050, audio_numpy), fig_mel, fig_align
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
with gr.Blocks() as demo:
|
| 146 |
+
gr.Markdown("<center><h1>English Neural Text-to-Speech</h1> "
|
| 147 |
+
"<h2>Speech Synthesis with Partial Style Control</h2></center><br>")
|
| 148 |
+
# gr.Markdown("## <center>Unsupervised Style Tokens using Single-Head Attention Parallel Encoder "
|
| 149 |
+
# "with Tacotron2</center>")
|
| 150 |
+
with gr.Row():
|
| 151 |
+
with gr.Column(scale=1):
|
| 152 |
+
# , value="Speech synthesis has evolved dramatically since the development of neural architectures capable of generating high quality samples."
|
| 153 |
+
inp = gr.Textbox(label="Input Text")
|
| 154 |
+
clear_btn = gr.ClearButton(value='Clear Text', size='sm', components=[inp])
|
| 155 |
+
# gr.Markdown("A continuació, calibrem els pesos dels *style tokens*:")
|
| 156 |
+
with gr.Row():
|
| 157 |
+
with gr.Column(scale=2):
|
| 158 |
+
with gr.Tab("Global Style Tokens"):
|
| 159 |
+
gst_1 = gr.Slider(0.2, 0.45, label="GST 1", value=0.4)
|
| 160 |
+
gst_2 = gr.Slider(0.2, 0.45, label="GST 2", value=0.26)
|
| 161 |
+
gst_3 = gr.Slider(0.2, 0.45, label="GST 3", value=0.33)
|
| 162 |
+
with gr.Column(scale=0):
|
| 163 |
+
with gr.Tab("Vocoder"):
|
| 164 |
+
vocoder = gr.Radio([("HiFi-GAN", 0), ("Griffin-Lim", 1)],
|
| 165 |
+
container=False, value=0, min_width=300) # label="Vocoder")
|
| 166 |
+
greet_btn = gr.Button("Synthesize!", scale=1)
|
| 167 |
+
with gr.Column():
|
| 168 |
+
with gr.Tab("Spectrogram"):
|
| 169 |
+
spec_plot = gr.Image(container=False)
|
| 170 |
+
with gr.Tab("Alignment"):
|
| 171 |
+
align_plot = gr.Image(container=False)
|
| 172 |
+
wave_video = gr.Video(label="Waveform", height=150, width=800, container=False)
|
| 173 |
+
|
| 174 |
+
def display_video():
|
| 175 |
+
return wave_video
|
| 176 |
+
greet_btn.click(fn=synthesize, inputs=[inp, gst_1, gst_2, gst_3, vocoder],
|
| 177 |
+
outputs=[wave_video, spec_plot, align_plot],
|
| 178 |
+
api_name="synthesize")
|
| 179 |
+
|
| 180 |
+
with gr.Row():
|
| 181 |
+
with gr.Column():
|
| 182 |
+
gr.Examples(examples=infer_from_text_examples,
|
| 183 |
+
inputs=[inp, gst_1, gst_2, gst_3, vocoder],
|
| 184 |
+
outputs=[wave_video, spec_plot, align_plot],
|
| 185 |
+
fn=synthesize,
|
| 186 |
+
cache_examples=False, )
|
| 187 |
+
gr.Markdown("""
|
| 188 |
+
### Details and Indications
|
| 189 |
+
This is a Text-to-Speech (TTS) system that consists of two modules: 1) a replicated Tacotron2 model, which generates
|
| 190 |
+
the spectrogram of the speech corresponding to the input text. And 2) a pre-trained HiFiGAN vocoder that maps
|
| 191 |
+
spectrograms to a digital waveforms. Global Style Tokens (GST) have been implemented to catch style information from
|
| 192 |
+
the female speaker with which the model has been trained (see the links below for more information).
|
| 193 |
+
Please, feel free to play with the GST scores and observe how the synthetic voice spells the input text.
|
| 194 |
+
Keep in mind that GSTs have been trained in an unsupervised way, so there is no specific control of
|
| 195 |
+
style attributes. Moreover, try to balance the GST scores by making them add up to a value close to 1. Below or
|
| 196 |
+
higher than 1 may cause low energy, mispronunciations or distortion.
|
| 197 |
+
You can choose between the HiFiGAN trained vocoder and the iterative algorithm Griffin-Lim, which does not need
|
| 198 |
+
to be trained but produces a "robotic" effect.
|
| 199 |
+
|
| 200 |
+
### More Information
|
| 201 |
+
Spectrogram generator has been adapted and trained from the
|
| 202 |
+
[NVIDIA's](https://github.com/NVIDIA/tacotron2) Tacotron2 replica published in
|
| 203 |
+
<a href="https://arxiv.org/abs/1712.05884" style="display: inline-block;margin-top: .5em;margin-right: .25em;"
|
| 204 |
+
target="_blank"> <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
|
| 205 |
+
src="https://img.shields.io/badge/ArXiv-Tacotron2-b31b1b" alt="Tacotron2"></a>
|
| 206 |
+
<br>
|
| 207 |
+
The neural vocoder is a pre-trained model replicated from <a href="https://arxiv.org/abs/2010.05646"
|
| 208 |
+
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom:
|
| 209 |
+
0em;display: inline;margin-top: -.25em;" src="https://img.shields.io/badge/ArXiv-HiFi%20GAN-b31b1b"
|
| 210 |
+
alt="HiFiGAN"></a>
|
| 211 |
+
<br>
|
| 212 |
+
Unsupervised style control has been implemented based on <a href="https://arxiv.org/abs/1803.09017" style="display:
|
| 213 |
+
inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom: 0em;display:
|
| 214 |
+
inline;margin-top: -.25em;" src="https://img.shields.io/badge/ArXiv-Global%20Style%20Tokens-b31b1b"
|
| 215 |
+
alt="Global Style Tokens"></a>
|
| 216 |
+
<br>
|
| 217 |
+
""")
|
| 218 |
+
|
| 219 |
+
demo.launch()
|