Spaces:
Runtime error
Runtime error
Modified layout with bigger saliency result
Browse files- README.md +3 -3
- app.py +235 -107
- requirements.txt +6 -1
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: XAITK-Gradio
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.7.1
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: XAITK-Gradio
|
| 3 |
+
emoji: 🕵️♂️
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.7.1
|
| 8 |
app_file: app.py
|
app.py
CHANGED
|
@@ -3,10 +3,12 @@
|
|
| 3 |
# This app makes use of the saliency generation example found in the base ``xaitk-saliency`` repo [here](https://github.com/XAITK/xaitk-saliency/blob/master/examples/OcclusionSaliency.ipynb), and explores integrating ``xaitk-saliency`` with ``Gradio`` to create an interactive interface for computing saliency maps.
|
| 4 |
|
| 5 |
import os
|
|
|
|
| 6 |
import PIL.Image
|
| 7 |
import matplotlib.pyplot as plt # type: ignore
|
| 8 |
import urllib
|
| 9 |
import numpy as np
|
|
|
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
from gradio import ( # type: ignore
|
|
@@ -49,6 +51,7 @@ import torch
|
|
| 49 |
import torchvision.transforms as transforms
|
| 50 |
import torchvision.models as models
|
| 51 |
import torch.nn.functional
|
|
|
|
| 52 |
|
| 53 |
from smqtk_detection.impls.detect_image_objects.resnet_frcnn import ResNetFRCNN
|
| 54 |
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.slidingwindow import SlidingWindowStack
|
|
@@ -57,7 +60,9 @@ from xaitk_saliency.impls.gen_object_detector_blackbox_sal.drise import RandomGr
|
|
| 57 |
from xaitk_saliency.interfaces.gen_object_detector_blackbox_sal import GenerateObjectDetectorBlackboxSaliency
|
| 58 |
from smqtk_detection.interfaces.detect_image_objects import DetectImageObjects
|
| 59 |
from smqtk_classifier.interfaces.classify_image import ClassifyImage
|
|
|
|
| 60 |
|
|
|
|
| 61 |
|
| 62 |
os.makedirs('data', exist_ok=True)
|
| 63 |
test_image_filename = 'data/catdog.jpg'
|
|
@@ -72,7 +77,7 @@ model_input_size = (224, 224)
|
|
| 72 |
model_mean = [0.485, 0.456, 0.406]
|
| 73 |
model_loader = transforms.Compose([
|
| 74 |
transforms.ToPILImage(),
|
| 75 |
-
transforms.Resize(model_input_size),
|
| 76 |
transforms.ToTensor(),
|
| 77 |
transforms.Normalize(
|
| 78 |
mean=model_mean,
|
|
@@ -84,32 +89,32 @@ def get_sal_labels(classes_file, custom_categories_list=None):
|
|
| 84 |
if not os.path.isfile(classes_file):
|
| 85 |
url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
|
| 86 |
_ = urllib.request.urlretrieve(url, classes_file)
|
| 87 |
-
|
| 88 |
f = open(classes_file, "r")
|
| 89 |
categories = [s.strip() for s in f.readlines()]
|
| 90 |
-
|
| 91 |
if not custom_categories_list == None:
|
| 92 |
sal_class_labels = custom_categories_list
|
| 93 |
else:
|
| 94 |
sal_class_labels = categories
|
| 95 |
-
|
| 96 |
sal_class_idxs = [categories.index(lbl) for lbl in sal_class_labels]
|
| 97 |
-
|
| 98 |
return sal_class_labels, sal_class_idxs
|
| 99 |
|
| 100 |
def get_det_sal_labels(classes_file, custom_categories_list=None):
|
| 101 |
if not os.path.isfile(classes_file):
|
| 102 |
url = "https://raw.githubusercontent.com/matlab-deep-learning/Object-Detection-Using-Pretrained-YOLO-v2/main/%2Bhelper/coco-classes.txt"
|
| 103 |
_ = urllib.request.urlretrieve(url, classes_file)
|
| 104 |
-
|
| 105 |
f = open(classes_file, "r")
|
| 106 |
categories = [s.strip() for s in f.readlines()]
|
| 107 |
-
|
| 108 |
if not custom_categories_list == None:
|
| 109 |
sal_obj_labels = custom_categories_list
|
| 110 |
else:
|
| 111 |
sal_obj_labels = categories
|
| 112 |
-
|
| 113 |
sal_obj_idxs = [categories.index(lbl) for lbl in sal_obj_labels]
|
| 114 |
|
| 115 |
return sal_obj_labels, sal_obj_idxs
|
|
@@ -131,9 +136,160 @@ def get_detection_model(model_choice):
|
|
| 131 |
blackbox_detector = ResNetFRCNN(
|
| 132 |
box_thresh=0.05,
|
| 133 |
img_batch_size=1,
|
| 134 |
-
use_cuda=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
)
|
| 136 |
-
|
| 137 |
else:
|
| 138 |
raise Exception("Unknown Input")
|
| 139 |
|
|
@@ -142,21 +298,21 @@ def get_detection_model(model_choice):
|
|
| 142 |
def get_saliency_algo(sal_choice):
|
| 143 |
if sal_choice == "RISE":
|
| 144 |
gen_sal = RISEStack(
|
| 145 |
-
n=num_masks_state[-1],
|
| 146 |
-
s=spatial_res_state[-1],
|
| 147 |
-
p1=p1_state[-1],
|
| 148 |
-
seed=seed_state[-1],
|
| 149 |
-
threads=threads_state[-1],
|
| 150 |
debiased=debiased_state[-1]
|
| 151 |
)
|
| 152 |
-
|
| 153 |
elif sal_choice == "SlidingWindowStack":
|
| 154 |
gen_sal = SlidingWindowStack(
|
| 155 |
window_size=eval(window_size_state[-1]),
|
| 156 |
stride=eval(stride_state[-1]),
|
| 157 |
threads=threads_state[-1]
|
| 158 |
)
|
| 159 |
-
|
| 160 |
else:
|
| 161 |
raise Exception("Unknown Input")
|
| 162 |
|
|
@@ -168,22 +324,22 @@ def get_detection_saliency_algo(sal_choice):
|
|
| 168 |
n=num_masks_state[-1],
|
| 169 |
s=eval(occlusion_grid_state[-1]),
|
| 170 |
p1=p1_state[-1],
|
| 171 |
-
threads=threads_state[-1],
|
| 172 |
-
seed=seed_state[-1],
|
| 173 |
)
|
| 174 |
-
|
| 175 |
elif sal_choice == "DRISE":
|
| 176 |
gen_sal = DRISEStack(
|
| 177 |
-
n=num_masks_state[-1],
|
| 178 |
-
s=spatial_res_state[-1],
|
| 179 |
-
p1=p1_state[-1],
|
| 180 |
-
seed=seed_state[-1],
|
| 181 |
threads=threads_state[-1]
|
| 182 |
)
|
| 183 |
-
|
| 184 |
else:
|
| 185 |
raise Exception("Unknown Input")
|
| 186 |
-
|
| 187 |
return gen_sal
|
| 188 |
|
| 189 |
|
|
@@ -202,27 +358,27 @@ class TorchResnet (ClassifyImage):
|
|
| 202 |
|
| 203 |
def get_labels(self):
|
| 204 |
return self.modified_class_labels
|
| 205 |
-
|
| 206 |
def set_labels(self, class_labels):
|
| 207 |
self.modified_class_labels = [lbl for lbl in class_labels]
|
| 208 |
-
|
| 209 |
@torch.no_grad()
|
| 210 |
def classify_images(self, image_iter):
|
| 211 |
# Input may either be an NDaray, or some arbitrary iterable of NDarray images.
|
| 212 |
-
|
| 213 |
model = get_model(img_cls_model_name[-1])
|
| 214 |
-
|
| 215 |
for img in image_iter:
|
| 216 |
image_tensor = model_loader(img).unsqueeze(0)
|
| 217 |
if CUDA_AVAILABLE:
|
| 218 |
image_tensor = image_tensor.cuda()
|
| 219 |
-
|
| 220 |
feature_vec = model(image_tensor)
|
| 221 |
# Converting feature extractor output to probabilities.
|
| 222 |
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
|
| 223 |
# Only return the confidences for the focus classes
|
| 224 |
yield dict(zip(sal_class_labels, class_conf[sal_class_idxs]))
|
| 225 |
-
|
| 226 |
def get_config(self):
|
| 227 |
# Required by a parent class.
|
| 228 |
return {}
|
|
@@ -256,7 +412,7 @@ def show_slider_parameters(choice):
|
|
| 256 |
return Slider(visible=True), Slider(visible=False)
|
| 257 |
else:
|
| 258 |
raise Exception("Unknown Input")
|
| 259 |
-
|
| 260 |
# Modify checkbox parameters based on chosen saliency algorithm
|
| 261 |
def show_debiased_checkbox(choice):
|
| 262 |
if choice == 'RISE':
|
|
@@ -268,7 +424,7 @@ def show_debiased_checkbox(choice):
|
|
| 268 |
|
| 269 |
# Function that is called after clicking the "Classify" button in the demo
|
| 270 |
def predict(x,top_n_classes):
|
| 271 |
-
|
| 272 |
image_tensor = model_loader(x).unsqueeze(0)
|
| 273 |
if CUDA_AVAILABLE:
|
| 274 |
image_tensor = image_tensor.cuda()
|
|
@@ -277,18 +433,18 @@ def predict(x,top_n_classes):
|
|
| 277 |
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
|
| 278 |
labels = list(zip(sal_class_labels, class_conf[sal_class_idxs].tolist()))
|
| 279 |
final_labels = dict(sorted(labels, key=lambda t: t[1],reverse=True)[:top_n_classes])
|
| 280 |
-
|
| 281 |
return final_labels, Dropdown(choices=list(final_labels))
|
| 282 |
|
| 283 |
# Interpretation function for image classification that implements the selected saliency algorithm and generates the class-wise saliency map visualizations
|
| 284 |
-
def interpretation_function(image: np.ndarray,
|
| 285 |
labels: dict,
|
| 286 |
-
nth_class: str,
|
| 287 |
img_alpha,
|
| 288 |
sal_alpha,
|
| 289 |
sal_range_min,
|
| 290 |
sal_range_max):
|
| 291 |
-
|
| 292 |
sal_generator = get_saliency_algo(img_cls_saliency_algo_name[-1])
|
| 293 |
sal_generator.fill = blackbox_fill
|
| 294 |
labels_list = labels.keys()
|
|
@@ -301,10 +457,10 @@ def interpretation_function(image: np.ndarray,
|
|
| 301 |
sal_alpha,
|
| 302 |
sal_range_min,
|
| 303 |
sal_range_max)
|
| 304 |
-
|
| 305 |
return fig
|
| 306 |
|
| 307 |
-
def visualize_saliency_plot(image: np.ndarray,
|
| 308 |
class_sal_map: np.ndarray,
|
| 309 |
img_alpha,
|
| 310 |
sal_alpha,
|
|
@@ -352,20 +508,20 @@ def run_detect(input_img: np.ndarray, num_detections: int):
|
|
| 352 |
conf_score = str(round(score_list[int(max_scores_index[i,0])],4))
|
| 353 |
label_with_score = str(i) + " : "+ label_name + " - " + conf_score
|
| 354 |
final_label.append(label_with_score)
|
| 355 |
-
|
| 356 |
bboxes_list = bboxes[:,:].astype(int).tolist()
|
| 357 |
|
| 358 |
return (input_img, list(zip([f for f in bboxes_list], [l for l in final_label]))[:num_detections]), Dropdown(choices=[l for l in final_label][:num_detections])
|
| 359 |
|
| 360 |
# Run saliency algorithm on the object detect predictions and generate corresponding visualizations
|
| 361 |
-
def run_detect_saliency(input_img: np.ndarray,
|
| 362 |
num_predictions,
|
| 363 |
-
obj_label,
|
| 364 |
img_alpha,
|
| 365 |
sal_alpha,
|
| 366 |
sal_range_min,
|
| 367 |
sal_range_max):
|
| 368 |
-
|
| 369 |
detect_model = get_detection_model(obj_det_model_name[-1])
|
| 370 |
img_preds = list(list(detect_model([input_img]))[0])
|
| 371 |
ref_preds = img_preds[:int(num_predictions)]
|
|
@@ -383,15 +539,11 @@ def run_detect_saliency(input_img: np.ndarray,
|
|
| 383 |
|
| 384 |
ref_bboxes = np.array(ref_bboxes)
|
| 385 |
ref_scores = np.array(ref_scores)
|
| 386 |
-
|
| 387 |
-
print(f"Ref bboxes: {ref_bboxes.shape}")
|
| 388 |
-
print(f"Ref scores: {ref_scores.shape}")
|
| 389 |
-
|
| 390 |
sal_generator = get_detection_saliency_algo(obj_det_saliency_algo_name[-1])
|
| 391 |
sal_generator.fill = blackbox_fill
|
| 392 |
-
|
| 393 |
sal_maps = gen_det_saliency(input_img, detect_model, sal_generator,ref_bboxes,ref_scores)
|
| 394 |
-
print(f"Saliency maps: {sal_maps.shape}")
|
| 395 |
|
| 396 |
nth_class_index = int(obj_label.split(' : ')[0])
|
| 397 |
scores = sal_maps[nth_class_index,:,:]
|
|
@@ -401,7 +553,7 @@ def run_detect_saliency(input_img: np.ndarray,
|
|
| 401 |
sal_alpha,
|
| 402 |
sal_range_min,
|
| 403 |
sal_range_max)
|
| 404 |
-
|
| 405 |
scores = np.clip(scores, sal_range_min, sal_range_max)
|
| 406 |
|
| 407 |
return fig
|
|
@@ -421,99 +573,74 @@ def gen_det_saliency(input_img: np.ndarray,
|
|
| 421 |
|
| 422 |
return sal_maps
|
| 423 |
|
| 424 |
-
with gr.Blocks() as
|
| 425 |
with Tab("Image Classification"):
|
| 426 |
with Row():
|
| 427 |
-
with Column(
|
| 428 |
drop_list = Dropdown(value=img_cls_model_name[-1],choices=["ResNet-18","ResNet-50"],label="Choose Model",interactive="True")
|
| 429 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
drop_list_sal = Dropdown(value=img_cls_saliency_algo_name[-1],choices=["SlidingWindowStack","RISE"],label="Choose Saliency Algorithm",interactive="True")
|
| 431 |
-
with Row():
|
| 432 |
-
with Column(scale=0.33):
|
| 433 |
window_size = Textbox(value=window_size_state[-1],label="Tuple of window size values (Press Enter to submit the input)",interactive=True,visible=False)
|
| 434 |
masks = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 435 |
-
with Column(scale=0.33):
|
| 436 |
stride = Textbox(value=stride_state[-1],label="Tuple of stride values (Press Enter to submit the input)" ,interactive=True,visible=False)
|
| 437 |
spatial_res = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
|
| 438 |
-
|
| 439 |
-
threads = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
|
| 440 |
-
with Row():
|
| 441 |
-
with Column(scale=0.33):
|
| 442 |
seed = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 443 |
-
with Column(scale=0.33):
|
| 444 |
p1 = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
input_img = Image(label="Saliency Map Generation", width=640, height=480)
|
| 450 |
-
num_classes = Slider(value=2,label="Top-N class labels", interactive=True,visible=True)
|
| 451 |
-
classify = Button("Classify")
|
| 452 |
-
with Column():
|
| 453 |
-
class_label = Label(label="Predicted Class")
|
| 454 |
-
with Column():
|
| 455 |
-
with Row():
|
| 456 |
-
class_name = Dropdown(label="Class to compute saliency",interactive=True,visible=True)
|
| 457 |
with Row():
|
| 458 |
img_alpha = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
| 459 |
sal_alpha = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
| 460 |
with Row():
|
| 461 |
min_sal_range = Slider(value=0,label="Minimum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
|
| 462 |
max_sal_range = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
|
| 463 |
-
|
| 464 |
-
generate_saliency = Button("Generate Saliency")
|
| 465 |
-
with Column():
|
| 466 |
-
with Tabs():
|
| 467 |
-
with TabItem("Display interpretation with plot"):
|
| 468 |
-
interpretation_plot = Plot()
|
| 469 |
|
| 470 |
with Tab("Object Detection"):
|
| 471 |
with Row():
|
| 472 |
-
with Column(
|
| 473 |
-
drop_list_detect_model = Dropdown(value=obj_det_model_name[-1],choices=["Faster-RCNN"],label="Choose Model",interactive="True")
|
| 474 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 475 |
drop_list_detect_sal = Dropdown(value=obj_det_saliency_algo_name[-1],choices=["RandomGridStack","DRISE"],label="Choose Saliency Algorithm",interactive="True")
|
| 476 |
-
with Row():
|
| 477 |
-
with Column(scale=0.33):
|
| 478 |
masks_detect = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 479 |
occlusion_grid_size = Textbox(value=occlusion_grid_state[-1],label="Tuple of occlusion grid size values (Press Enter to submit the input)",interactive=True,visible=False)
|
| 480 |
spatial_res_detect = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
|
| 481 |
-
with Column(scale=0.33):
|
| 482 |
seed_detect = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 483 |
p1_detect = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
|
| 484 |
-
with Column(scale=0.33):
|
| 485 |
threads_detect = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
num_detections = Slider(value=2,label="Top-N detections", interactive=True,visible=True)
|
| 490 |
-
detection = Button("Run Detection Algorithm")
|
| 491 |
-
with Column():
|
| 492 |
-
detect_label = AnnotatedImage(label="Detections")
|
| 493 |
-
with Column():
|
| 494 |
-
with Row():
|
| 495 |
-
class_name_det = Dropdown(label="Detection to compute saliency",interactive=True,visible=True)
|
| 496 |
with Row():
|
| 497 |
img_alpha_det = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
| 498 |
sal_alpha_det = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
| 499 |
with Row():
|
| 500 |
min_sal_range_det = Slider(value=0.95,label="Minimum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
|
| 501 |
max_sal_range_det = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
|
| 502 |
-
|
| 503 |
-
generate_det_saliency = Button("Generate Saliency")
|
| 504 |
-
with Column():
|
| 505 |
-
with Tabs():
|
| 506 |
-
with TabItem("Display saliency map plot"):
|
| 507 |
-
det_saliency_plot = Plot()
|
| 508 |
|
| 509 |
-
# Image Classification dropdown list event listeners
|
| 510 |
drop_list.select(select_img_cls_model,drop_list,drop_list)
|
| 511 |
drop_list_sal.select(select_img_cls_saliency_algo,drop_list_sal,drop_list_sal)
|
| 512 |
drop_list_sal.change(show_textbox_parameters,drop_list_sal,[window_size,stride,masks,spatial_res,seed])
|
| 513 |
drop_list_sal.change(show_slider_parameters,drop_list_sal,[threads,p1])
|
| 514 |
drop_list_sal.change(show_debiased_checkbox,drop_list_sal,debiased)
|
| 515 |
|
| 516 |
-
# Image Classification textbox, slider and checkbox event listeners
|
| 517 |
window_size.submit(enter_window_size,window_size,window_size)
|
| 518 |
masks.submit(enter_num_masks,masks,masks)
|
| 519 |
stride.submit(enter_stride, stride, stride)
|
|
@@ -533,7 +660,7 @@ with gr.Blocks() as demo:
|
|
| 533 |
drop_list_detect_sal.change(show_slider_parameters,drop_list_detect_sal,[threads_detect,p1_detect])
|
| 534 |
drop_list_detect_sal.change(show_textbox_parameters,drop_list_detect_sal,[masks_detect,spatial_res_detect,seed_detect,occlusion_grid_size])
|
| 535 |
|
| 536 |
-
# Object detection textbox and slider event listeners
|
| 537 |
masks_detect.submit(enter_num_masks,masks_detect,masks_detect)
|
| 538 |
occlusion_grid_size.submit(enter_occlusion_grid_size,occlusion_grid_size,occlusion_grid_size)
|
| 539 |
spatial_res_detect.submit(enter_spatial_res, spatial_res_detect, spatial_res_detect)
|
|
@@ -545,4 +672,5 @@ with gr.Blocks() as demo:
|
|
| 545 |
detection.click(run_detect, [input_img_detect, num_detections], [detect_label,class_name_det])
|
| 546 |
generate_det_saliency.click(run_detect_saliency,[input_img_detect, num_detections, class_name_det, img_alpha_det, sal_alpha_det, min_sal_range_det, max_sal_range_det],det_saliency_plot)
|
| 547 |
|
| 548 |
-
|
|
|
|
|
|
| 3 |
# This app makes use of the saliency generation example found in the base ``xaitk-saliency`` repo [here](https://github.com/XAITK/xaitk-saliency/blob/master/examples/OcclusionSaliency.ipynb), and explores integrating ``xaitk-saliency`` with ``Gradio`` to create an interactive interface for computing saliency maps.
|
| 4 |
|
| 5 |
import os
|
| 6 |
+
import sys
|
| 7 |
import PIL.Image
|
| 8 |
import matplotlib.pyplot as plt # type: ignore
|
| 9 |
import urllib
|
| 10 |
import numpy as np
|
| 11 |
+
from git import Repo
|
| 12 |
|
| 13 |
import gradio as gr
|
| 14 |
from gradio import ( # type: ignore
|
|
|
|
| 51 |
import torchvision.transforms as transforms
|
| 52 |
import torchvision.models as models
|
| 53 |
import torch.nn.functional
|
| 54 |
+
from torch.utils.data import Dataset, DataLoader
|
| 55 |
|
| 56 |
from smqtk_detection.impls.detect_image_objects.resnet_frcnn import ResNetFRCNN
|
| 57 |
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.slidingwindow import SlidingWindowStack
|
|
|
|
| 60 |
from xaitk_saliency.interfaces.gen_object_detector_blackbox_sal import GenerateObjectDetectorBlackboxSaliency
|
| 61 |
from smqtk_detection.interfaces.detect_image_objects import DetectImageObjects
|
| 62 |
from smqtk_classifier.interfaces.classify_image import ClassifyImage
|
| 63 |
+
from smqtk_image_io import AxisAlignedBoundingBox
|
| 64 |
|
| 65 |
+
from typing import Iterable, Dict, Hashable, Tuple
|
| 66 |
|
| 67 |
os.makedirs('data', exist_ok=True)
|
| 68 |
test_image_filename = 'data/catdog.jpg'
|
|
|
|
| 77 |
model_mean = [0.485, 0.456, 0.406]
|
| 78 |
model_loader = transforms.Compose([
|
| 79 |
transforms.ToPILImage(),
|
| 80 |
+
transforms.Resize(model_input_size),
|
| 81 |
transforms.ToTensor(),
|
| 82 |
transforms.Normalize(
|
| 83 |
mean=model_mean,
|
|
|
|
| 89 |
if not os.path.isfile(classes_file):
|
| 90 |
url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
|
| 91 |
_ = urllib.request.urlretrieve(url, classes_file)
|
| 92 |
+
|
| 93 |
f = open(classes_file, "r")
|
| 94 |
categories = [s.strip() for s in f.readlines()]
|
| 95 |
+
|
| 96 |
if not custom_categories_list == None:
|
| 97 |
sal_class_labels = custom_categories_list
|
| 98 |
else:
|
| 99 |
sal_class_labels = categories
|
| 100 |
+
|
| 101 |
sal_class_idxs = [categories.index(lbl) for lbl in sal_class_labels]
|
| 102 |
+
|
| 103 |
return sal_class_labels, sal_class_idxs
|
| 104 |
|
| 105 |
def get_det_sal_labels(classes_file, custom_categories_list=None):
|
| 106 |
if not os.path.isfile(classes_file):
|
| 107 |
url = "https://raw.githubusercontent.com/matlab-deep-learning/Object-Detection-Using-Pretrained-YOLO-v2/main/%2Bhelper/coco-classes.txt"
|
| 108 |
_ = urllib.request.urlretrieve(url, classes_file)
|
| 109 |
+
|
| 110 |
f = open(classes_file, "r")
|
| 111 |
categories = [s.strip() for s in f.readlines()]
|
| 112 |
+
|
| 113 |
if not custom_categories_list == None:
|
| 114 |
sal_obj_labels = custom_categories_list
|
| 115 |
else:
|
| 116 |
sal_obj_labels = categories
|
| 117 |
+
|
| 118 |
sal_obj_idxs = [categories.index(lbl) for lbl in sal_obj_labels]
|
| 119 |
|
| 120 |
return sal_obj_labels, sal_obj_idxs
|
|
|
|
| 136 |
blackbox_detector = ResNetFRCNN(
|
| 137 |
box_thresh=0.05,
|
| 138 |
img_batch_size=1,
|
| 139 |
+
use_cuda=CUDA_AVAILABLE
|
| 140 |
+
)
|
| 141 |
+
elif model_choice == "TPH-YOLOv5":
|
| 142 |
+
dest = os.path.join(data_path, 'tph-yolov5')
|
| 143 |
+
if not os.path.isdir(dest):
|
| 144 |
+
Repo.clone_from("https://github.com/cv516Buaa/tph-yolov5.git", dest)
|
| 145 |
+
sys.path.insert(1, dest)
|
| 146 |
+
|
| 147 |
+
# imports from TPH-YOLOv5 github repo
|
| 148 |
+
from utils.augmentations import letterbox
|
| 149 |
+
from models.experimental import attempt_load
|
| 150 |
+
from utils.datasets import LoadImages
|
| 151 |
+
from utils.general import non_max_suppression, scale_coords
|
| 152 |
+
|
| 153 |
+
class YOLOVisdrone(DetectImageObjects):
|
| 154 |
+
def __init__(
|
| 155 |
+
self,
|
| 156 |
+
weights,
|
| 157 |
+
img_size=(640, 640),
|
| 158 |
+
batch_size=1,
|
| 159 |
+
conf_thresh=0.5,
|
| 160 |
+
iou_thresh=0.5,
|
| 161 |
+
use_cuda=False,
|
| 162 |
+
num_workers=4
|
| 163 |
+
):
|
| 164 |
+
"""
|
| 165 |
+
img_size: size of image input to model
|
| 166 |
+
batch_size: number of images to input as once
|
| 167 |
+
conf_thresh: confidence threshold for detection results
|
| 168 |
+
iou_thresh: IOU threshold for NMS
|
| 169 |
+
use_cuda: use CUDA device to compute detections
|
| 170 |
+
num_workers: number of worker processes to use for data loading
|
| 171 |
+
"""
|
| 172 |
+
|
| 173 |
+
self.img_size = np.array(img_size)
|
| 174 |
+
|
| 175 |
+
if use_cuda:
|
| 176 |
+
self.device = torch.device('cuda:0')
|
| 177 |
+
else:
|
| 178 |
+
self.device = torch.device('cpu')
|
| 179 |
+
|
| 180 |
+
self.model = attempt_load(weights).to(self.device)
|
| 181 |
+
self.model = self.model.eval()
|
| 182 |
+
|
| 183 |
+
self.conf_thresh = conf_thresh
|
| 184 |
+
self.iou_thresh = iou_thresh
|
| 185 |
+
|
| 186 |
+
self.batch_size = batch_size
|
| 187 |
+
self.num_workers = num_workers
|
| 188 |
+
|
| 189 |
+
with torch.no_grad():
|
| 190 |
+
_ = self.model(torch.zeros(1, 3, *self.img_size).to(self.device)) # warm up
|
| 191 |
+
|
| 192 |
+
def detect_objects(
|
| 193 |
+
self,
|
| 194 |
+
imgIter: Iterable[np.ndarray]
|
| 195 |
+
) -> Iterable[Iterable[Tuple[AxisAlignedBoundingBox, Dict[Hashable, float]]]]:
|
| 196 |
+
|
| 197 |
+
# pytorch DataLoader for passed images
|
| 198 |
+
dataset = DataLoader(
|
| 199 |
+
pytorchDataset(
|
| 200 |
+
imgIter,
|
| 201 |
+
img_size=self.img_size,
|
| 202 |
+
|
| 203 |
+
),
|
| 204 |
+
batch_size=self.batch_size,
|
| 205 |
+
num_workers=self.num_workers
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# list of AxisAlignedBoundingBox detections to return
|
| 209 |
+
preds = []
|
| 210 |
+
for i, (img_batch, hs, ws) in enumerate(dataset):
|
| 211 |
+
# load batch and normalize
|
| 212 |
+
img_batch = img_batch.to(self.device)
|
| 213 |
+
img_batch = img_batch.float()
|
| 214 |
+
img_batch /= 255
|
| 215 |
+
|
| 216 |
+
# pass through model
|
| 217 |
+
with torch.no_grad():
|
| 218 |
+
pred_batch = self.model(img_batch)[0]
|
| 219 |
+
|
| 220 |
+
# perform NMS and scale detections to original image dimensions
|
| 221 |
+
for img_pred, h, w in zip(pred_batch, hs, ws):
|
| 222 |
+
img_pred = non_max_suppression(
|
| 223 |
+
img_pred[None], conf_thres=self.conf_thresh, iou_thres=self.iou_thresh)[0]
|
| 224 |
+
img_pred[:, :4] = scale_coords(
|
| 225 |
+
img_batch.shape[2:], img_pred[:, :4], (h, w))
|
| 226 |
+
img_pred = img_pred.cpu().numpy()
|
| 227 |
+
|
| 228 |
+
preds.append(pred_mat_to_list(img_pred))
|
| 229 |
+
|
| 230 |
+
return preds
|
| 231 |
+
|
| 232 |
+
# requried by interface
|
| 233 |
+
def get_config(self):
|
| 234 |
+
return {}
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class pytorchDataset(Dataset):
|
| 238 |
+
"""
|
| 239 |
+
pyTorch DataLoader for images. Resizes image to model input size and
|
| 240 |
+
returns original height and width as well.
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
def __init__(self, imgs, img_size=[640, 640]):
|
| 244 |
+
self.imgs = list(imgs)
|
| 245 |
+
self.img_size = img_size
|
| 246 |
+
|
| 247 |
+
def __getitem__(self, idx):
|
| 248 |
+
img = self.imgs[idx]
|
| 249 |
+
h = img.shape[0]
|
| 250 |
+
w = img.shape[1]
|
| 251 |
+
|
| 252 |
+
img = letterbox(img, new_shape=self.img_size, auto=True)[0]
|
| 253 |
+
img = img.transpose((2, 0, 1))
|
| 254 |
+
img = np.ascontiguousarray(img)
|
| 255 |
+
|
| 256 |
+
return img, h, w
|
| 257 |
+
|
| 258 |
+
def __len__(self):
|
| 259 |
+
return len(self.imgs)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def pred_mat_to_list(preds):
|
| 263 |
+
"""
|
| 264 |
+
Convert prediction matrix model output to AxisAlignedBoundingBox format.
|
| 265 |
+
"""
|
| 266 |
+
pred_list = []
|
| 267 |
+
|
| 268 |
+
for pred in preds:
|
| 269 |
+
bbox = AxisAlignedBoundingBox(pred[0:2], pred[2:4])
|
| 270 |
+
|
| 271 |
+
CLASS_NAMES = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck',
|
| 272 |
+
'tricycle', 'awning-tricycle', 'bus', 'motor']
|
| 273 |
+
score_dict = dict.fromkeys(CLASS_NAMES, 0)
|
| 274 |
+
score_dict[CLASS_NAMES[int(pred[5])]] = pred[4]
|
| 275 |
+
|
| 276 |
+
pred_list.append((bbox, score_dict))
|
| 277 |
+
|
| 278 |
+
return pred_list
|
| 279 |
+
|
| 280 |
+
model_file = os.path.join(data_path,'tph-yolov5.pth')
|
| 281 |
+
if not os.path.isfile(model_file):
|
| 282 |
+
urllib.request.urlretrieve('https://data.kitware.com/api/v1/item/623880d04acac99f429fe3bf/download', model_file)
|
| 283 |
+
|
| 284 |
+
blackbox_detector = YOLOVisdrone(
|
| 285 |
+
weights=model_file,
|
| 286 |
+
img_size=(1536,1536),
|
| 287 |
+
batch_size=1,
|
| 288 |
+
use_cuda=CUDA_AVAILABLE,
|
| 289 |
+
num_workers=4,
|
| 290 |
+
conf_thresh=0.1,
|
| 291 |
+
iou_thresh=0.5
|
| 292 |
)
|
|
|
|
| 293 |
else:
|
| 294 |
raise Exception("Unknown Input")
|
| 295 |
|
|
|
|
| 298 |
def get_saliency_algo(sal_choice):
|
| 299 |
if sal_choice == "RISE":
|
| 300 |
gen_sal = RISEStack(
|
| 301 |
+
n=num_masks_state[-1],
|
| 302 |
+
s=spatial_res_state[-1],
|
| 303 |
+
p1=p1_state[-1],
|
| 304 |
+
seed=seed_state[-1],
|
| 305 |
+
threads=threads_state[-1],
|
| 306 |
debiased=debiased_state[-1]
|
| 307 |
)
|
| 308 |
+
|
| 309 |
elif sal_choice == "SlidingWindowStack":
|
| 310 |
gen_sal = SlidingWindowStack(
|
| 311 |
window_size=eval(window_size_state[-1]),
|
| 312 |
stride=eval(stride_state[-1]),
|
| 313 |
threads=threads_state[-1]
|
| 314 |
)
|
| 315 |
+
|
| 316 |
else:
|
| 317 |
raise Exception("Unknown Input")
|
| 318 |
|
|
|
|
| 324 |
n=num_masks_state[-1],
|
| 325 |
s=eval(occlusion_grid_state[-1]),
|
| 326 |
p1=p1_state[-1],
|
| 327 |
+
threads=threads_state[-1],
|
| 328 |
+
seed=seed_state[-1],
|
| 329 |
)
|
| 330 |
+
|
| 331 |
elif sal_choice == "DRISE":
|
| 332 |
gen_sal = DRISEStack(
|
| 333 |
+
n=num_masks_state[-1],
|
| 334 |
+
s=spatial_res_state[-1],
|
| 335 |
+
p1=p1_state[-1],
|
| 336 |
+
seed=seed_state[-1],
|
| 337 |
threads=threads_state[-1]
|
| 338 |
)
|
| 339 |
+
|
| 340 |
else:
|
| 341 |
raise Exception("Unknown Input")
|
| 342 |
+
|
| 343 |
return gen_sal
|
| 344 |
|
| 345 |
|
|
|
|
| 358 |
|
| 359 |
def get_labels(self):
|
| 360 |
return self.modified_class_labels
|
| 361 |
+
|
| 362 |
def set_labels(self, class_labels):
|
| 363 |
self.modified_class_labels = [lbl for lbl in class_labels]
|
| 364 |
+
|
| 365 |
@torch.no_grad()
|
| 366 |
def classify_images(self, image_iter):
|
| 367 |
# Input may either be an NDaray, or some arbitrary iterable of NDarray images.
|
| 368 |
+
|
| 369 |
model = get_model(img_cls_model_name[-1])
|
| 370 |
+
|
| 371 |
for img in image_iter:
|
| 372 |
image_tensor = model_loader(img).unsqueeze(0)
|
| 373 |
if CUDA_AVAILABLE:
|
| 374 |
image_tensor = image_tensor.cuda()
|
| 375 |
+
|
| 376 |
feature_vec = model(image_tensor)
|
| 377 |
# Converting feature extractor output to probabilities.
|
| 378 |
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
|
| 379 |
# Only return the confidences for the focus classes
|
| 380 |
yield dict(zip(sal_class_labels, class_conf[sal_class_idxs]))
|
| 381 |
+
|
| 382 |
def get_config(self):
|
| 383 |
# Required by a parent class.
|
| 384 |
return {}
|
|
|
|
| 412 |
return Slider(visible=True), Slider(visible=False)
|
| 413 |
else:
|
| 414 |
raise Exception("Unknown Input")
|
| 415 |
+
|
| 416 |
# Modify checkbox parameters based on chosen saliency algorithm
|
| 417 |
def show_debiased_checkbox(choice):
|
| 418 |
if choice == 'RISE':
|
|
|
|
| 424 |
|
| 425 |
# Function that is called after clicking the "Classify" button in the demo
|
| 426 |
def predict(x,top_n_classes):
|
| 427 |
+
|
| 428 |
image_tensor = model_loader(x).unsqueeze(0)
|
| 429 |
if CUDA_AVAILABLE:
|
| 430 |
image_tensor = image_tensor.cuda()
|
|
|
|
| 433 |
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
|
| 434 |
labels = list(zip(sal_class_labels, class_conf[sal_class_idxs].tolist()))
|
| 435 |
final_labels = dict(sorted(labels, key=lambda t: t[1],reverse=True)[:top_n_classes])
|
| 436 |
+
|
| 437 |
return final_labels, Dropdown(choices=list(final_labels))
|
| 438 |
|
| 439 |
# Interpretation function for image classification that implements the selected saliency algorithm and generates the class-wise saliency map visualizations
|
| 440 |
+
def interpretation_function(image: np.ndarray,
|
| 441 |
labels: dict,
|
| 442 |
+
nth_class: str,
|
| 443 |
img_alpha,
|
| 444 |
sal_alpha,
|
| 445 |
sal_range_min,
|
| 446 |
sal_range_max):
|
| 447 |
+
|
| 448 |
sal_generator = get_saliency_algo(img_cls_saliency_algo_name[-1])
|
| 449 |
sal_generator.fill = blackbox_fill
|
| 450 |
labels_list = labels.keys()
|
|
|
|
| 457 |
sal_alpha,
|
| 458 |
sal_range_min,
|
| 459 |
sal_range_max)
|
| 460 |
+
|
| 461 |
return fig
|
| 462 |
|
| 463 |
+
def visualize_saliency_plot(image: np.ndarray,
|
| 464 |
class_sal_map: np.ndarray,
|
| 465 |
img_alpha,
|
| 466 |
sal_alpha,
|
|
|
|
| 508 |
conf_score = str(round(score_list[int(max_scores_index[i,0])],4))
|
| 509 |
label_with_score = str(i) + " : "+ label_name + " - " + conf_score
|
| 510 |
final_label.append(label_with_score)
|
| 511 |
+
|
| 512 |
bboxes_list = bboxes[:,:].astype(int).tolist()
|
| 513 |
|
| 514 |
return (input_img, list(zip([f for f in bboxes_list], [l for l in final_label]))[:num_detections]), Dropdown(choices=[l for l in final_label][:num_detections])
|
| 515 |
|
| 516 |
# Run saliency algorithm on the object detect predictions and generate corresponding visualizations
|
| 517 |
+
def run_detect_saliency(input_img: np.ndarray,
|
| 518 |
num_predictions,
|
| 519 |
+
obj_label,
|
| 520 |
img_alpha,
|
| 521 |
sal_alpha,
|
| 522 |
sal_range_min,
|
| 523 |
sal_range_max):
|
| 524 |
+
|
| 525 |
detect_model = get_detection_model(obj_det_model_name[-1])
|
| 526 |
img_preds = list(list(detect_model([input_img]))[0])
|
| 527 |
ref_preds = img_preds[:int(num_predictions)]
|
|
|
|
| 539 |
|
| 540 |
ref_bboxes = np.array(ref_bboxes)
|
| 541 |
ref_scores = np.array(ref_scores)
|
| 542 |
+
|
|
|
|
|
|
|
|
|
|
| 543 |
sal_generator = get_detection_saliency_algo(obj_det_saliency_algo_name[-1])
|
| 544 |
sal_generator.fill = blackbox_fill
|
| 545 |
+
|
| 546 |
sal_maps = gen_det_saliency(input_img, detect_model, sal_generator,ref_bboxes,ref_scores)
|
|
|
|
| 547 |
|
| 548 |
nth_class_index = int(obj_label.split(' : ')[0])
|
| 549 |
scores = sal_maps[nth_class_index,:,:]
|
|
|
|
| 553 |
sal_alpha,
|
| 554 |
sal_range_min,
|
| 555 |
sal_range_max)
|
| 556 |
+
|
| 557 |
scores = np.clip(scores, sal_range_min, sal_range_max)
|
| 558 |
|
| 559 |
return fig
|
|
|
|
| 573 |
|
| 574 |
return sal_maps
|
| 575 |
|
| 576 |
+
with gr.Blocks() as xaitk_demo:
|
| 577 |
with Tab("Image Classification"):
|
| 578 |
with Row():
|
| 579 |
+
with Column():
|
| 580 |
drop_list = Dropdown(value=img_cls_model_name[-1],choices=["ResNet-18","ResNet-50"],label="Choose Model",interactive="True")
|
| 581 |
+
input_img = Image(label="Input Image")
|
| 582 |
+
num_classes = Slider(value=2,label="Top-N Class Labels", interactive=True,visible=True)
|
| 583 |
+
classify = Button("Classify")
|
| 584 |
+
class_label = Label(label="Predictions")
|
| 585 |
+
class_name = Dropdown(label="Class to Compute Saliency",interactive=True,visible=True)
|
| 586 |
+
with Column():
|
| 587 |
drop_list_sal = Dropdown(value=img_cls_saliency_algo_name[-1],choices=["SlidingWindowStack","RISE"],label="Choose Saliency Algorithm",interactive="True")
|
|
|
|
|
|
|
| 588 |
window_size = Textbox(value=window_size_state[-1],label="Tuple of window size values (Press Enter to submit the input)",interactive=True,visible=False)
|
| 589 |
masks = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
|
|
|
| 590 |
stride = Textbox(value=stride_state[-1],label="Tuple of stride values (Press Enter to submit the input)" ,interactive=True,visible=False)
|
| 591 |
spatial_res = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
|
| 592 |
+
debiased = Checkbox(value=debiased_state[-1],label="Debiased", interactive=True, visible=True)
|
|
|
|
|
|
|
|
|
|
| 593 |
seed = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
|
|
|
| 594 |
p1 = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
|
| 595 |
+
threads = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
|
| 596 |
+
with Tabs():
|
| 597 |
+
with TabItem("Display Interpretation with Plot"):
|
| 598 |
+
interpretation_plot = Plot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
with Row():
|
| 600 |
img_alpha = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
| 601 |
sal_alpha = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
| 602 |
with Row():
|
| 603 |
min_sal_range = Slider(value=0,label="Minimum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
|
| 604 |
max_sal_range = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
|
| 605 |
+
generate_saliency = Button("Generate Saliency")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
|
| 607 |
with Tab("Object Detection"):
|
| 608 |
with Row():
|
| 609 |
+
with Column():
|
| 610 |
+
drop_list_detect_model = Dropdown(value=obj_det_model_name[-1],choices=["Faster-RCNN", "TPH-YOLOv5"],label="Choose Model",interactive="True")
|
| 611 |
+
input_img_detect = Image(label="Input Image")
|
| 612 |
+
num_detections = Slider(value=2,label="Top-N Detections", interactive=True,visible=True)
|
| 613 |
+
detection = Button("Run Detection Algorithm")
|
| 614 |
+
detect_label = AnnotatedImage(label="Detections")
|
| 615 |
+
class_name_det = Dropdown(label="Detection to Compute Saliency",interactive=True,visible=True)
|
| 616 |
+
|
| 617 |
+
with Column():
|
| 618 |
drop_list_detect_sal = Dropdown(value=obj_det_saliency_algo_name[-1],choices=["RandomGridStack","DRISE"],label="Choose Saliency Algorithm",interactive="True")
|
|
|
|
|
|
|
| 619 |
masks_detect = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 620 |
occlusion_grid_size = Textbox(value=occlusion_grid_state[-1],label="Tuple of occlusion grid size values (Press Enter to submit the input)",interactive=True,visible=False)
|
| 621 |
spatial_res_detect = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
|
|
|
|
| 622 |
seed_detect = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 623 |
p1_detect = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
|
|
|
|
| 624 |
threads_detect = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
|
| 625 |
+
with Tabs():
|
| 626 |
+
with TabItem("Display saliency map plot"):
|
| 627 |
+
det_saliency_plot = Plot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 628 |
with Row():
|
| 629 |
img_alpha_det = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
| 630 |
sal_alpha_det = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
|
| 631 |
with Row():
|
| 632 |
min_sal_range_det = Slider(value=0.95,label="Minimum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
|
| 633 |
max_sal_range_det = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
|
| 634 |
+
generate_det_saliency = Button("Generate Saliency")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 635 |
|
| 636 |
+
# Image Classification dropdown list event listeners
|
| 637 |
drop_list.select(select_img_cls_model,drop_list,drop_list)
|
| 638 |
drop_list_sal.select(select_img_cls_saliency_algo,drop_list_sal,drop_list_sal)
|
| 639 |
drop_list_sal.change(show_textbox_parameters,drop_list_sal,[window_size,stride,masks,spatial_res,seed])
|
| 640 |
drop_list_sal.change(show_slider_parameters,drop_list_sal,[threads,p1])
|
| 641 |
drop_list_sal.change(show_debiased_checkbox,drop_list_sal,debiased)
|
| 642 |
|
| 643 |
+
# Image Classification textbox, slider and checkbox event listeners
|
| 644 |
window_size.submit(enter_window_size,window_size,window_size)
|
| 645 |
masks.submit(enter_num_masks,masks,masks)
|
| 646 |
stride.submit(enter_stride, stride, stride)
|
|
|
|
| 660 |
drop_list_detect_sal.change(show_slider_parameters,drop_list_detect_sal,[threads_detect,p1_detect])
|
| 661 |
drop_list_detect_sal.change(show_textbox_parameters,drop_list_detect_sal,[masks_detect,spatial_res_detect,seed_detect,occlusion_grid_size])
|
| 662 |
|
| 663 |
+
# Object detection textbox and slider event listeners
|
| 664 |
masks_detect.submit(enter_num_masks,masks_detect,masks_detect)
|
| 665 |
occlusion_grid_size.submit(enter_occlusion_grid_size,occlusion_grid_size,occlusion_grid_size)
|
| 666 |
spatial_res_detect.submit(enter_spatial_res, spatial_res_detect, spatial_res_detect)
|
|
|
|
| 672 |
detection.click(run_detect, [input_img_detect, num_detections], [detect_label,class_name_det])
|
| 673 |
generate_det_saliency.click(run_detect_saliency,[input_img_detect, num_detections, class_name_det, img_alpha_det, sal_alpha_det, min_sal_range_det, max_sal_range_det],det_saliency_plot)
|
| 674 |
|
| 675 |
+
|
| 676 |
+
xaitk_demo.launch(show_error=True)
|
requirements.txt
CHANGED
|
@@ -2,4 +2,9 @@ xaitk-saliency
|
|
| 2 |
torch
|
| 3 |
torchvision
|
| 4 |
urllib3
|
| 5 |
-
Pillow
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
torch
|
| 3 |
torchvision
|
| 4 |
urllib3
|
| 5 |
+
Pillow
|
| 6 |
+
gitpython
|
| 7 |
+
|
| 8 |
+
# tph-yolov5
|
| 9 |
+
opencv-python
|
| 10 |
+
seaborn
|