Spaces:
Runtime error
Runtime error
Commit
·
70d905f
1
Parent(s):
c73bbfb
Updated app to support gradio v4.7.1
Browse files
app.py
CHANGED
|
@@ -1,23 +1,7 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
#
|
| 4 |
-
|
| 5 |
-
# extension: .py
|
| 6 |
-
# format_name: light
|
| 7 |
-
# format_version: '1.5'
|
| 8 |
-
# jupytext_version: 1.15.2
|
| 9 |
-
# kernelspec:
|
| 10 |
-
# display_name: Python 3
|
| 11 |
-
# language: python
|
| 12 |
-
# name: python3
|
| 13 |
-
# ---
|
| 14 |
-
|
| 15 |
-
# # Gradio Example <a name="XAITK-Saliency-Gradio-Example"></a>
|
| 16 |
-
# This notebook makes use of the saliency generation example found in the base ``xaitk-saliency`` repo [here](https://github.com/XAITK/xaitk-saliency/blob/master/examples/OcclusionSaliency.ipynb), and explores integrating ``xaitk-saliency`` with ``Gradio`` to create an interactive interface for computing saliency maps.
|
| 17 |
-
#
|
| 18 |
-
# ## Test Image <a name="Test-Image-Gradio"></a>
|
| 19 |
-
|
| 20 |
-
# +
|
| 21 |
import os
|
| 22 |
import PIL.Image
|
| 23 |
import matplotlib.pyplot as plt # type: ignore
|
|
@@ -27,11 +11,10 @@ import numpy as np
|
|
| 27 |
import gradio as gr
|
| 28 |
from gradio import ( # type: ignore
|
| 29 |
AnnotatedImage, Button, Column, Image, Label, # type: ignore
|
| 30 |
-
Number, Plot, Row, TabItem, Tab, Tabs # type: ignore
|
|
|
|
| 31 |
)
|
| 32 |
-
from gradio import components as gr_components # type: ignore
|
| 33 |
|
| 34 |
-
# +
|
| 35 |
# State variables for Image Classification
|
| 36 |
from gr_component_state import ( # type: ignore
|
| 37 |
img_cls_model_name, img_cls_saliency_algo_name, window_size_state, stride_state, debiased_state,
|
|
@@ -65,25 +48,16 @@ from gr_component_state import ( # type: ignore
|
|
| 65 |
import torch
|
| 66 |
import torchvision.transforms as transforms
|
| 67 |
import torchvision.models as models
|
|
|
|
| 68 |
|
| 69 |
from smqtk_detection.impls.detect_image_objects.resnet_frcnn import ResNetFRCNN
|
| 70 |
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.slidingwindow import SlidingWindowStack
|
| 71 |
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.rise import RISEStack
|
| 72 |
from xaitk_saliency.impls.gen_object_detector_blackbox_sal.drise import RandomGridStack, DRISEStack
|
| 73 |
-
|
| 74 |
-
import torch.nn.functional
|
| 75 |
-
from smqtk_classifier.interfaces.classify_image import ClassifyImage
|
| 76 |
-
|
| 77 |
-
import numpy as np
|
| 78 |
-
from gradio import ( # type: ignore
|
| 79 |
-
Checkbox, Dropdown, SelectData, Slider, Textbox # type: ignore
|
| 80 |
-
)
|
| 81 |
-
from gradio import processing_utils as gr_processing_utils # type: ignore
|
| 82 |
from xaitk_saliency.interfaces.gen_object_detector_blackbox_sal import GenerateObjectDetectorBlackboxSaliency
|
| 83 |
from smqtk_detection.interfaces.detect_image_objects import DetectImageObjects
|
|
|
|
| 84 |
|
| 85 |
-
# Use JPEG format for inline visualizations here.
|
| 86 |
-
# %config InlineBackend.figure_format = "jpeg"
|
| 87 |
|
| 88 |
os.makedirs('data', exist_ok=True)
|
| 89 |
test_image_filename = 'data/catdog.jpg'
|
|
@@ -91,15 +65,6 @@ urllib.request.urlretrieve('https://farm1.staticflickr.com/74/202734059_fcce636d
|
|
| 91 |
plt.figure(figsize=(12, 8))
|
| 92 |
plt.axis('off')
|
| 93 |
_ = plt.imshow(PIL.Image.open(test_image_filename))
|
| 94 |
-
# -
|
| 95 |
-
|
| 96 |
-
# ## Initialize state variables for Gradio components <a name="Global-State-Gradio"></a>
|
| 97 |
-
# Gradio expects either a list or dict format to maintain state variables based on the use case. The cell below initializes the state variables from the ``gr_component_state.py`` file for the various components in our gradio demo.
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
# ## Helper Functions <a name="Helper-Functions-Gradio"></a>
|
| 102 |
-
# The functions defined in the cell below are used to set up the model, saliency algorithm, class labels and image transforms needed for the demo.
|
| 103 |
|
| 104 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
| 105 |
|
|
@@ -273,31 +238,31 @@ sal_obj_labels, sal_obj_idxs = get_det_sal_labels(obj_classes_file)
|
|
| 273 |
# Modify textbox parameters based on chosen saliency algorithm
|
| 274 |
def show_textbox_parameters(choice):
|
| 275 |
if choice == 'RISE':
|
| 276 |
-
return Textbox
|
| 277 |
elif choice == 'SlidingWindowStack':
|
| 278 |
-
return Textbox
|
| 279 |
elif choice == "RandomGridStack":
|
| 280 |
-
return Textbox
|
| 281 |
elif choice == "DRISE":
|
| 282 |
-
return Textbox
|
| 283 |
else:
|
| 284 |
raise Exception("Unknown Input")
|
| 285 |
|
| 286 |
# Modify slider parameters based on chosen saliency algorithm
|
| 287 |
def show_slider_parameters(choice):
|
| 288 |
if choice == 'RISE' or choice == 'RandomGridStack' or choice == 'DRISE':
|
| 289 |
-
return Slider
|
| 290 |
elif choice == 'SlidingWindowStack':
|
| 291 |
-
return Slider
|
| 292 |
else:
|
| 293 |
raise Exception("Unknown Input")
|
| 294 |
|
| 295 |
# Modify checkbox parameters based on chosen saliency algorithm
|
| 296 |
def show_debiased_checkbox(choice):
|
| 297 |
if choice == 'RISE':
|
| 298 |
-
return Checkbox
|
| 299 |
elif choice == 'SlidingWindowStack' or choice == 'RandomGridStack' or choice == 'DRISE':
|
| 300 |
-
return Checkbox
|
| 301 |
else:
|
| 302 |
raise Exception("Unknown Input")
|
| 303 |
|
|
@@ -313,7 +278,7 @@ def predict(x,top_n_classes):
|
|
| 313 |
labels = list(zip(sal_class_labels, class_conf[sal_class_idxs].tolist()))
|
| 314 |
final_labels = dict(sorted(labels, key=lambda t: t[1],reverse=True)[:top_n_classes])
|
| 315 |
|
| 316 |
-
return final_labels, Dropdown(choices=list(final_labels)
|
| 317 |
|
| 318 |
# Interpretation function for image classification that implements the selected saliency algorithm and generates the class-wise saliency map visualizations
|
| 319 |
def interpretation_function(image: np.ndarray,
|
|
@@ -390,7 +355,7 @@ def run_detect(input_img: np.ndarray, num_detections: int):
|
|
| 390 |
|
| 391 |
bboxes_list = bboxes[:,:].astype(int).tolist()
|
| 392 |
|
| 393 |
-
return (input_img, list(zip([f for f in bboxes_list], [l for l in final_label]))[:num_detections]), Dropdown(choices=[l for l in final_label][:num_detections]
|
| 394 |
|
| 395 |
# Run saliency algorithm on the object detect predictions and generate corresponding visualizations
|
| 396 |
def run_detect_saliency(input_img: np.ndarray,
|
|
@@ -456,11 +421,6 @@ def gen_det_saliency(input_img: np.ndarray,
|
|
| 456 |
|
| 457 |
return sal_maps
|
| 458 |
|
| 459 |
-
# Event handler that populates the dropdown list of classes based on the Label/AnnotatedImage components' output
|
| 460 |
-
def map_labels(evt: SelectData):
|
| 461 |
-
|
| 462 |
-
return str(evt.value)
|
| 463 |
-
|
| 464 |
with gr.Blocks() as demo:
|
| 465 |
with Tab("Image Classification"):
|
| 466 |
with Row():
|
|
@@ -471,19 +431,19 @@ with gr.Blocks() as demo:
|
|
| 471 |
with Row():
|
| 472 |
with Column(scale=0.33):
|
| 473 |
window_size = Textbox(value=window_size_state[-1],label="Tuple of window size values (Press Enter to submit the input)",interactive=True,visible=False)
|
| 474 |
-
masks = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=
|
| 475 |
with Column(scale=0.33):
|
| 476 |
stride = Textbox(value=stride_state[-1],label="Tuple of stride values (Press Enter to submit the input)" ,interactive=True,visible=False)
|
| 477 |
-
spatial_res = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=
|
| 478 |
with Column(scale=0.33):
|
| 479 |
-
threads = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=
|
| 480 |
with Row():
|
| 481 |
with Column(scale=0.33):
|
| 482 |
-
seed = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=
|
| 483 |
with Column(scale=0.33):
|
| 484 |
-
p1 = Slider(value=p1_state[-1],label="P1",interactive=True,visible=
|
| 485 |
with Column(scale=0.33):
|
| 486 |
-
debiased = Checkbox(value=debiased_state[-1],label="Debiased", interactive=True, visible=
|
| 487 |
with Row():
|
| 488 |
with Column():
|
| 489 |
input_img = Image(label="Saliency Map Generation", width=640, height=480)
|
|
@@ -515,14 +475,14 @@ with gr.Blocks() as demo:
|
|
| 515 |
drop_list_detect_sal = Dropdown(value=obj_det_saliency_algo_name[-1],choices=["RandomGridStack","DRISE"],label="Choose Saliency Algorithm",interactive="True")
|
| 516 |
with Row():
|
| 517 |
with Column(scale=0.33):
|
| 518 |
-
masks_detect = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=
|
| 519 |
occlusion_grid_size = Textbox(value=occlusion_grid_state[-1],label="Tuple of occlusion grid size values (Press Enter to submit the input)",interactive=True,visible=False)
|
| 520 |
-
spatial_res_detect = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=
|
| 521 |
with Column(scale=0.33):
|
| 522 |
-
seed_detect = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=
|
| 523 |
-
p1_detect = Slider(value=p1_state[-1],label="P1",interactive=True,visible=
|
| 524 |
with Column(scale=0.33):
|
| 525 |
-
threads_detect = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=
|
| 526 |
with Row():
|
| 527 |
with Column():
|
| 528 |
input_img_detect = Image(label="Saliency Map Generation", width=640, height=480)
|
|
@@ -565,7 +525,6 @@ with gr.Blocks() as demo:
|
|
| 565 |
|
| 566 |
# Image Classification prediction and saliency generation event listeners
|
| 567 |
classify.click(predict, [input_img, num_classes], [class_label,class_name])
|
| 568 |
-
class_label.select(map_labels,None,class_name)
|
| 569 |
generate_saliency.click(interpretation_function, [input_img, class_label, class_name, img_alpha, sal_alpha, min_sal_range, max_sal_range], [interpretation_plot])
|
| 570 |
|
| 571 |
# Object Detection dropdown list event listeners
|
|
@@ -584,7 +543,6 @@ with gr.Blocks() as demo:
|
|
| 584 |
|
| 585 |
# Object detection prediction, class selection and saliency generation event listeners
|
| 586 |
detection.click(run_detect, [input_img_detect, num_detections], [detect_label,class_name_det])
|
| 587 |
-
detect_label.select(map_labels, None, class_name_det)
|
| 588 |
generate_det_saliency.click(run_detect_saliency,[input_img_detect, num_detections, class_name_det, img_alpha_det, sal_alpha_det, min_sal_range_det, max_sal_range_det],det_saliency_plot)
|
| 589 |
|
| 590 |
demo.launch()
|
|
|
|
| 1 |
+
## Gradio Example
|
| 2 |
+
|
| 3 |
+
# This app makes use of the saliency generation example found in the base ``xaitk-saliency`` repo [here](https://github.com/XAITK/xaitk-saliency/blob/master/examples/OcclusionSaliency.ipynb), and explores integrating ``xaitk-saliency`` with ``Gradio`` to create an interactive interface for computing saliency maps.
|
| 4 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import os
|
| 6 |
import PIL.Image
|
| 7 |
import matplotlib.pyplot as plt # type: ignore
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
from gradio import ( # type: ignore
|
| 13 |
AnnotatedImage, Button, Column, Image, Label, # type: ignore
|
| 14 |
+
Number, Plot, Row, TabItem, Tab, Tabs, # type: ignore
|
| 15 |
+
Checkbox, Dropdown, Slider, Textbox # type: ignore
|
| 16 |
)
|
|
|
|
| 17 |
|
|
|
|
| 18 |
# State variables for Image Classification
|
| 19 |
from gr_component_state import ( # type: ignore
|
| 20 |
img_cls_model_name, img_cls_saliency_algo_name, window_size_state, stride_state, debiased_state,
|
|
|
|
| 48 |
import torch
|
| 49 |
import torchvision.transforms as transforms
|
| 50 |
import torchvision.models as models
|
| 51 |
+
import torch.nn.functional
|
| 52 |
|
| 53 |
from smqtk_detection.impls.detect_image_objects.resnet_frcnn import ResNetFRCNN
|
| 54 |
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.slidingwindow import SlidingWindowStack
|
| 55 |
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.rise import RISEStack
|
| 56 |
from xaitk_saliency.impls.gen_object_detector_blackbox_sal.drise import RandomGridStack, DRISEStack
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
from xaitk_saliency.interfaces.gen_object_detector_blackbox_sal import GenerateObjectDetectorBlackboxSaliency
|
| 58 |
from smqtk_detection.interfaces.detect_image_objects import DetectImageObjects
|
| 59 |
+
from smqtk_classifier.interfaces.classify_image import ClassifyImage
|
| 60 |
|
|
|
|
|
|
|
| 61 |
|
| 62 |
os.makedirs('data', exist_ok=True)
|
| 63 |
test_image_filename = 'data/catdog.jpg'
|
|
|
|
| 65 |
plt.figure(figsize=(12, 8))
|
| 66 |
plt.axis('off')
|
| 67 |
_ = plt.imshow(PIL.Image.open(test_image_filename))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
CUDA_AVAILABLE = torch.cuda.is_available()
|
| 70 |
|
|
|
|
| 238 |
# Modify textbox parameters based on chosen saliency algorithm
|
| 239 |
def show_textbox_parameters(choice):
|
| 240 |
if choice == 'RISE':
|
| 241 |
+
return Textbox(visible=False), Textbox(visible=False), Textbox(visible=True), Textbox(visible=True), Textbox(visible=True)
|
| 242 |
elif choice == 'SlidingWindowStack':
|
| 243 |
+
return Textbox(visible=True), Textbox(visible=True), Textbox(visible=False), Textbox(visible=False), Textbox(visible=False)
|
| 244 |
elif choice == "RandomGridStack":
|
| 245 |
+
return Textbox(visible=True), Textbox(visible=False), Textbox(visible=True), Textbox(visible=True)
|
| 246 |
elif choice == "DRISE":
|
| 247 |
+
return Textbox(visible=True), Textbox(visible=True), Textbox(visible=True), Textbox(visible=False)
|
| 248 |
else:
|
| 249 |
raise Exception("Unknown Input")
|
| 250 |
|
| 251 |
# Modify slider parameters based on chosen saliency algorithm
|
| 252 |
def show_slider_parameters(choice):
|
| 253 |
if choice == 'RISE' or choice == 'RandomGridStack' or choice == 'DRISE':
|
| 254 |
+
return Slider(visible=True), Slider(visible=True)
|
| 255 |
elif choice == 'SlidingWindowStack':
|
| 256 |
+
return Slider(visible=True), Slider(visible=False)
|
| 257 |
else:
|
| 258 |
raise Exception("Unknown Input")
|
| 259 |
|
| 260 |
# Modify checkbox parameters based on chosen saliency algorithm
|
| 261 |
def show_debiased_checkbox(choice):
|
| 262 |
if choice == 'RISE':
|
| 263 |
+
return Checkbox(visible=True)
|
| 264 |
elif choice == 'SlidingWindowStack' or choice == 'RandomGridStack' or choice == 'DRISE':
|
| 265 |
+
return Checkbox(visible=False)
|
| 266 |
else:
|
| 267 |
raise Exception("Unknown Input")
|
| 268 |
|
|
|
|
| 278 |
labels = list(zip(sal_class_labels, class_conf[sal_class_idxs].tolist()))
|
| 279 |
final_labels = dict(sorted(labels, key=lambda t: t[1],reverse=True)[:top_n_classes])
|
| 280 |
|
| 281 |
+
return final_labels, Dropdown(choices=list(final_labels))
|
| 282 |
|
| 283 |
# Interpretation function for image classification that implements the selected saliency algorithm and generates the class-wise saliency map visualizations
|
| 284 |
def interpretation_function(image: np.ndarray,
|
|
|
|
| 355 |
|
| 356 |
bboxes_list = bboxes[:,:].astype(int).tolist()
|
| 357 |
|
| 358 |
+
return (input_img, list(zip([f for f in bboxes_list], [l for l in final_label]))[:num_detections]), Dropdown(choices=[l for l in final_label][:num_detections])
|
| 359 |
|
| 360 |
# Run saliency algorithm on the object detect predictions and generate corresponding visualizations
|
| 361 |
def run_detect_saliency(input_img: np.ndarray,
|
|
|
|
| 421 |
|
| 422 |
return sal_maps
|
| 423 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
with gr.Blocks() as demo:
|
| 425 |
with Tab("Image Classification"):
|
| 426 |
with Row():
|
|
|
|
| 431 |
with Row():
|
| 432 |
with Column(scale=0.33):
|
| 433 |
window_size = Textbox(value=window_size_state[-1],label="Tuple of window size values (Press Enter to submit the input)",interactive=True,visible=False)
|
| 434 |
+
masks = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 435 |
with Column(scale=0.33):
|
| 436 |
stride = Textbox(value=stride_state[-1],label="Tuple of stride values (Press Enter to submit the input)" ,interactive=True,visible=False)
|
| 437 |
+
spatial_res = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
|
| 438 |
with Column(scale=0.33):
|
| 439 |
+
threads = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
|
| 440 |
with Row():
|
| 441 |
with Column(scale=0.33):
|
| 442 |
+
seed = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 443 |
with Column(scale=0.33):
|
| 444 |
+
p1 = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
|
| 445 |
with Column(scale=0.33):
|
| 446 |
+
debiased = Checkbox(value=debiased_state[-1],label="Debiased", interactive=True, visible=True)
|
| 447 |
with Row():
|
| 448 |
with Column():
|
| 449 |
input_img = Image(label="Saliency Map Generation", width=640, height=480)
|
|
|
|
| 475 |
drop_list_detect_sal = Dropdown(value=obj_det_saliency_algo_name[-1],choices=["RandomGridStack","DRISE"],label="Choose Saliency Algorithm",interactive="True")
|
| 476 |
with Row():
|
| 477 |
with Column(scale=0.33):
|
| 478 |
+
masks_detect = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 479 |
occlusion_grid_size = Textbox(value=occlusion_grid_state[-1],label="Tuple of occlusion grid size values (Press Enter to submit the input)",interactive=True,visible=False)
|
| 480 |
+
spatial_res_detect = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
|
| 481 |
with Column(scale=0.33):
|
| 482 |
+
seed_detect = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
|
| 483 |
+
p1_detect = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
|
| 484 |
with Column(scale=0.33):
|
| 485 |
+
threads_detect = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
|
| 486 |
with Row():
|
| 487 |
with Column():
|
| 488 |
input_img_detect = Image(label="Saliency Map Generation", width=640, height=480)
|
|
|
|
| 525 |
|
| 526 |
# Image Classification prediction and saliency generation event listeners
|
| 527 |
classify.click(predict, [input_img, num_classes], [class_label,class_name])
|
|
|
|
| 528 |
generate_saliency.click(interpretation_function, [input_img, class_label, class_name, img_alpha, sal_alpha, min_sal_range, max_sal_range], [interpretation_plot])
|
| 529 |
|
| 530 |
# Object Detection dropdown list event listeners
|
|
|
|
| 543 |
|
| 544 |
# Object detection prediction, class selection and saliency generation event listeners
|
| 545 |
detection.click(run_detect, [input_img_detect, num_detections], [detect_label,class_name_det])
|
|
|
|
| 546 |
generate_det_saliency.click(run_detect_saliency,[input_img_detect, num_detections, class_name_det, img_alpha_det, sal_alpha_det, min_sal_range_det, max_sal_range_det],det_saliency_plot)
|
| 547 |
|
| 548 |
demo.launch()
|