Spaces:
Runtime error
Runtime error
| # Choice of image classification model | |
| img_cls_model_name = ['ResNet-50'] | |
| # Choice of object detection model | |
| obj_det_model_name = ['Faster-RCNN'] | |
| # Choice of image classification saliency algorithm | |
| img_cls_saliency_algo_name = ['RISE'] | |
| # Choice of object detection saliency algorithm | |
| obj_det_saliency_algo_name = ['DRISE'] | |
| # Number of threads to utilize when generating masks | |
| threads_state = [4] | |
| # Window_size for SlidingWindowStack algorithm | |
| window_size_state = ['(50,50)'] | |
| # Stride for SlidingWindowStack algorithm | |
| stride_state = ['(20,20)'] | |
| # Number of random masks for RISEStack/DRISEStack algorithm | |
| num_masks_state = [200] | |
| # Spatial resolution of masking grid for RISEStack/DRISEStack algorithm | |
| spatial_res_state = [8] | |
| # Probability of the grid cell being set to 1 (otherwise 0) | |
| p1_state = [0.5] | |
| # Random seed to allow for reproducibility | |
| seed_state = [0] | |
| # Debiased option for RISEStack/DRISEStack saliency algorithm | |
| debiased_state = [True] | |
| # Occlusion grid cell size in pixels for RandomGridStack algorithm | |
| occlusion_grid_state = ['(128,128)'] | |
| def select_img_cls_model(model_choice): | |
| img_cls_model_name.append(model_choice) | |
| return model_choice | |
| def select_obj_det_model(model_choice): | |
| obj_det_model_name.append(model_choice) | |
| return model_choice | |
| def select_img_cls_saliency_algo(sal_choice): | |
| img_cls_saliency_algo_name.append(sal_choice) | |
| return sal_choice | |
| def select_obj_det_saliency_algo(sal_choice): | |
| obj_det_saliency_algo_name.append(sal_choice) | |
| return sal_choice | |
| def select_threads(threads): | |
| threads_state.append(threads) | |
| return threads | |
| def enter_window_size(val): | |
| window_size_state.append(val) | |
| return val | |
| def enter_stride(val): | |
| stride_state.append(val) | |
| return val | |
| def enter_num_masks(val): | |
| num_masks_state.append(val) | |
| return val | |
| def enter_spatial_res(val): | |
| spatial_res_state.append(val) | |
| return val | |
| def select_p1(prob): | |
| p1_state.append(prob) | |
| return prob | |
| def enter_seed(seed): | |
| seed_state.append(seed) | |
| return seed | |
| def check_debiased(debiased): | |
| debiased_state.append(debiased) | |
| return debiased | |
| def enter_occlusion_grid_size(val): | |
| occlusion_grid_state.append(val) | |
| return val | |