Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Inc. team. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| """Siglip model configuration""" | |
| import os | |
| from typing import Union | |
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| class SiglipTextConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a | |
| Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip | |
| [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 32000): | |
| Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by | |
| the `inputs_ids` passed when calling [`SiglipModel`]. | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| intermediate_size (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| max_position_embeddings (`int`, *optional*, defaults to 64): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
| The epsilon used by the layer normalization layers. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| pad_token_id (`int`, *optional*, defaults to 1): | |
| The id of the padding token in the vocabulary. | |
| bos_token_id (`int`, *optional*, defaults to 49406): | |
| The id of the beginning-of-sequence token in the vocabulary. | |
| eos_token_id (`int`, *optional*, defaults to 49407): | |
| The id of the end-of-sequence token in the vocabulary. | |
| Example: | |
| ```python | |
| >>> from transformers import SiglipTextConfig, SiglipTextModel | |
| >>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration | |
| >>> configuration = SiglipTextConfig() | |
| >>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration | |
| >>> model = SiglipTextModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "siglip_text_model" | |
| def __init__( | |
| self, | |
| vocab_size=32000, | |
| hidden_size=768, | |
| intermediate_size=3072, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| max_position_embeddings=64, | |
| hidden_act="gelu_pytorch_tanh", | |
| layer_norm_eps=1e-6, | |
| attention_dropout=0.0, | |
| # This differs from `CLIPTokenizer`'s default and from openai/siglip | |
| # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538 | |
| pad_token_id=1, | |
| bos_token_id=49406, | |
| eos_token_id=49407, | |
| **kwargs, | |
| ): | |
| super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.max_position_embeddings = max_position_embeddings | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| self.attention_dropout = attention_dropout | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| cls._set_token_in_kwargs(kwargs) | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| # get the text config dict if we are loading from SiglipConfig | |
| if config_dict.get("model_type") == "siglip": | |
| config_dict = config_dict["text_config"] | |
| if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class SiglipVisionConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a | |
| Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip | |
| [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| intermediate_size (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| num_channels (`int`, *optional*, defaults to 3): | |
| Number of channels in the input images. | |
| image_size (`int`, *optional*, defaults to 224): | |
| The size (resolution) of each image. | |
| patch_size (`int`, *optional*, defaults to 16): | |
| The size (resolution) of each patch. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
| The epsilon used by the layer normalization layers. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| Example: | |
| ```python | |
| >>> from transformers import SiglipVisionConfig, SiglipVisionModel | |
| >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration | |
| >>> configuration = SiglipVisionConfig() | |
| >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration | |
| >>> model = SiglipVisionModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "siglip_vision_model" | |
| def __init__( | |
| self, | |
| hidden_size=768, | |
| intermediate_size=3072, | |
| num_hidden_layers=12, | |
| num_attention_heads=12, | |
| num_channels=3, | |
| image_size=224, | |
| patch_size=16, | |
| hidden_act="gelu_pytorch_tanh", | |
| layer_norm_eps=1e-6, | |
| attention_dropout=0.0, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.num_channels = num_channels | |
| self.patch_size = patch_size | |
| self.image_size = image_size | |
| self.attention_dropout = attention_dropout | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| cls._set_token_in_kwargs(kwargs) | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| # get the vision config dict if we are loading from SiglipConfig | |
| if config_dict.get("model_type") == "siglip": | |
| config_dict = config_dict["vision_config"] | |
| if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class SiglipConfig(PretrainedConfig): | |
| r""" | |
| [`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to | |
| instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs. | |
| Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip | |
| [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| text_config (`dict`, *optional*): | |
| Dictionary of configuration options used to initialize [`SiglipTextConfig`]. | |
| vision_config (`dict`, *optional*): | |
| Dictionary of configuration options used to initialize [`SiglipVisionConfig`]. | |
| kwargs (*optional*): | |
| Dictionary of keyword arguments. | |
| Example: | |
| ```python | |
| >>> from transformers import SiglipConfig, SiglipModel | |
| >>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration | |
| >>> configuration = SiglipConfig() | |
| >>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration | |
| >>> model = SiglipModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| >>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig | |
| >>> from transformers import SiglipTextConfig, SiglipVisionConfig | |
| >>> # Initializing a SiglipText and SiglipVision configuration | |
| >>> config_text = SiglipTextConfig() | |
| >>> config_vision = SiglipVisionConfig() | |
| >>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision) | |
| ```""" | |
| model_type = "siglip" | |
| def __init__(self, text_config=None, vision_config=None, **kwargs): | |
| super().__init__(**kwargs) | |
| if text_config is None: | |
| text_config = {} | |
| logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.") | |
| if vision_config is None: | |
| vision_config = {} | |
| logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.") | |
| self.text_config = SiglipTextConfig(**text_config) | |
| self.vision_config = SiglipVisionConfig(**vision_config) | |
| self.initializer_factor = 1.0 | |
| def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs): | |
| r""" | |
| Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision | |
| model configuration. | |
| Returns: | |
| [`SiglipConfig`]: An instance of a configuration object | |
| """ | |
| return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) | |