Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2025 Bytedance Ltd. and/or its affiliates. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| from copy import deepcopy | |
| from typing import List, Optional, Union, Any | |
| from PIL import Image | |
| import torch | |
| from data.data_utils import pil_img2rgb | |
| from modeling.bagel.qwen2_navit import NaiveCache | |
| VLM_THINK_SYSTEM_PROMPT = '''You should first think about the reasoning process in the mind and then provide the user with the answer. | |
| The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here''' | |
| GEN_THINK_SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image. | |
| The planning process is enclosed within <think> </think> tags, i.e. <think> planning process here </think> image here''' | |
| class InterleaveInferencer: | |
| def __init__(self, model, vae_model, tokenizer, vae_transform, vit_transform, new_token_ids): | |
| self.model = model | |
| self.vae_model = vae_model | |
| self.tokenizer = tokenizer | |
| self.vae_transform = vae_transform | |
| self.vit_transform = vit_transform | |
| self.new_token_ids = new_token_ids | |
| def init_gen_context(self): | |
| gen_context = { | |
| 'kv_lens': [0], | |
| 'ropes': [0], | |
| 'past_key_values': NaiveCache(self.model.config.llm_config.num_hidden_layers), | |
| } | |
| return gen_context | |
| def update_context_text(self, text, gen_context): | |
| # used for interleave data, currently only support 1 data inference, | |
| past_key_values = gen_context['past_key_values'] | |
| kv_lens = gen_context['kv_lens'] | |
| ropes = gen_context['ropes'] | |
| generation_input, kv_lens, ropes = self.model.prepare_prompts( | |
| curr_kvlens=kv_lens, | |
| curr_rope=ropes, | |
| prompts=[text], | |
| tokenizer=self.tokenizer, | |
| new_token_ids=self.new_token_ids, | |
| ) | |
| past_key_values = self.model.forward_cache_update_text(past_key_values, **generation_input) | |
| gen_context['kv_lens'] = kv_lens | |
| gen_context['ropes'] = ropes | |
| gen_context['past_key_values'] = past_key_values | |
| return gen_context | |
| def update_context_image(self, image, gen_context, vae=True, vit=True): | |
| # used for interleave data, currently only support 1 data inference, | |
| assert vae or vit | |
| past_key_values = gen_context['past_key_values'] | |
| kv_lens = gen_context['kv_lens'] | |
| ropes = gen_context['ropes'] | |
| if vae: | |
| ## update vae | |
| generation_input, kv_lens, ropes = self.model.prepare_vae_images( | |
| curr_kvlens=kv_lens, | |
| curr_rope=ropes, | |
| images=[image], | |
| transforms=self.vae_transform, | |
| new_token_ids=self.new_token_ids, | |
| ) | |
| past_key_values = self.model.forward_cache_update_vae(self.vae_model, past_key_values, **generation_input) | |
| if vit: | |
| ## update vit | |
| generation_input, kv_lens, ropes = self.model.prepare_vit_images( | |
| curr_kvlens=kv_lens, | |
| curr_rope=ropes, | |
| images=[image], | |
| transforms=self.vit_transform, | |
| new_token_ids=self.new_token_ids, | |
| ) | |
| past_key_values = self.model.forward_cache_update_vit(past_key_values, **generation_input) | |
| gen_context['kv_lens'] = kv_lens | |
| gen_context['ropes'] = ropes | |
| gen_context['past_key_values'] = past_key_values | |
| return gen_context | |
| def gen_image( | |
| self, | |
| image_shape, | |
| gen_context, | |
| cfg_text_scale=4.0, | |
| cfg_img_scale=1.5, | |
| cfg_text_precontext=None, | |
| cfg_img_precontext=None, | |
| cfg_interval=(0.4, 1.0), | |
| cfg_renorm_min=0.0, | |
| cfg_renorm_type="global", | |
| num_timesteps=50, | |
| timestep_shift=3.0 | |
| ): | |
| # print(cfg_renorm_type) | |
| past_key_values = gen_context['past_key_values'] | |
| kv_lens = gen_context['kv_lens'] | |
| ropes = gen_context['ropes'] | |
| generation_input = self.model.prepare_vae_latent( | |
| curr_kvlens=kv_lens, | |
| curr_rope=ropes, | |
| image_sizes=[image_shape], | |
| new_token_ids=self.new_token_ids, | |
| ) | |
| # text cfg | |
| cfg_text_past_key_values = cfg_text_precontext['past_key_values'] | |
| kv_lens_cfg = cfg_text_precontext['kv_lens'] | |
| ropes_cfg = cfg_text_precontext['ropes'] | |
| generation_input_cfg_text = self.model.prepare_vae_latent_cfg( | |
| curr_kvlens=kv_lens_cfg, | |
| curr_rope=ropes_cfg, | |
| image_sizes=[image_shape], | |
| ) | |
| # img cfg | |
| cfg_img_past_key_values = cfg_img_precontext['past_key_values'] | |
| kv_lens_cfg = cfg_img_precontext['kv_lens'] | |
| ropes_cfg = cfg_img_precontext['ropes'] | |
| generation_input_cfg_img = self.model.prepare_vae_latent_cfg( | |
| curr_kvlens=kv_lens_cfg, | |
| curr_rope=ropes_cfg, | |
| image_sizes=[image_shape], | |
| ) | |
| unpacked_latent = self.model.generate_image( | |
| past_key_values=past_key_values, | |
| cfg_text_past_key_values=cfg_text_past_key_values, | |
| cfg_img_past_key_values=cfg_img_past_key_values, | |
| num_timesteps=num_timesteps, | |
| cfg_text_scale=cfg_text_scale, | |
| cfg_img_scale=cfg_img_scale, | |
| cfg_interval=cfg_interval, | |
| cfg_renorm_min=cfg_renorm_min, | |
| cfg_renorm_type=cfg_renorm_type, | |
| timestep_shift=timestep_shift, | |
| **generation_input, | |
| cfg_text_packed_position_ids=generation_input_cfg_text['cfg_packed_position_ids'], | |
| cfg_text_packed_query_indexes=generation_input_cfg_text['cfg_packed_query_indexes'], | |
| cfg_text_key_values_lens=generation_input_cfg_text['cfg_key_values_lens'], | |
| cfg_text_packed_key_value_indexes=generation_input_cfg_text['cfg_packed_key_value_indexes'], | |
| cfg_img_packed_position_ids=generation_input_cfg_img['cfg_packed_position_ids'], | |
| cfg_img_packed_query_indexes=generation_input_cfg_img['cfg_packed_query_indexes'], | |
| cfg_img_key_values_lens=generation_input_cfg_img['cfg_key_values_lens'], | |
| cfg_img_packed_key_value_indexes=generation_input_cfg_img['cfg_packed_key_value_indexes'], | |
| ) | |
| image = self.decode_image(unpacked_latent[0], image_shape) | |
| return image | |
| def decode_image(self, latent, image_shape): | |
| H, W = image_shape | |
| h, w = H // self.model.latent_downsample, W // self.model.latent_downsample | |
| latent = latent.reshape(1, h, w, self.model.latent_patch_size, self.model.latent_patch_size, self.model.latent_channel) | |
| latent = torch.einsum("nhwpqc->nchpwq", latent) | |
| latent = latent.reshape(1, self.model.latent_channel, h * self.model.latent_patch_size, w * self.model.latent_patch_size) | |
| image = self.vae_model.decode(latent) | |
| image = (image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255 | |
| image = Image.fromarray((image).to(torch.uint8).cpu().numpy()) | |
| return image | |
| def gen_text(self, gen_context, max_length: int = 500, do_sample: bool = True, temperature: float = 1.0): | |
| gen_context = deepcopy(gen_context) | |
| past_key_values = gen_context['past_key_values'] | |
| kv_lens = gen_context['kv_lens'] | |
| ropes = gen_context['ropes'] | |
| generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids) | |
| for unpacked_latent in self.model.generate_text( | |
| past_key_values=past_key_values, | |
| max_length=max_length, | |
| do_sample=do_sample, | |
| temperature=temperature, | |
| end_token_id=self.new_token_ids['eos_token_id'], | |
| **generation_input, | |
| ): | |
| output = self.tokenizer.decode(unpacked_latent) | |
| if output != "<|im_end|>": | |
| yield output | |
| def interleave_inference( | |
| self, | |
| input_lists: List[Union[str, Image.Image]], | |
| think=False, | |
| understanding_output=False, | |
| # for gen_text | |
| max_think_token_n=1000, | |
| do_sample=False, | |
| text_temperature=0.3, | |
| # for gen_image | |
| cfg_text_scale=3.0, | |
| cfg_img_scale=1.5, | |
| cfg_interval=[0.4, 1.0], | |
| timestep_shift=3.0, | |
| num_timesteps=50, | |
| cfg_renorm_min=0.0, | |
| cfg_renorm_type="global", | |
| image_shapes=(1024, 1024), # Default, can be overridden by actual input image | |
| ): | |
| gen_context = self.init_gen_context() | |
| cfg_text_context = deepcopy(gen_context) | |
| cfg_img_context = deepcopy(gen_context) | |
| with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16): | |
| if think: | |
| system_prompt = VLM_THINK_SYSTEM_PROMPT if understanding_output else GEN_THINK_SYSTEM_PROMPT | |
| gen_context = self.update_context_text(system_prompt, gen_context) | |
| cfg_text_context = self.update_context_text(system_prompt, cfg_text_context) | |
| cfg_img_context = self.update_context_text(system_prompt, cfg_img_context) | |
| for input_term in input_lists: | |
| if isinstance(input_term, str): | |
| cfg_text_context = deepcopy(gen_context) | |
| gen_context = self.update_context_text(input_term, gen_context) | |
| cfg_img_context = self.update_context_text(input_term, cfg_img_context) | |
| elif isinstance(input_term, Image.Image): | |
| input_term = self.vae_transform.resize_transform(pil_img2rgb(input_term)) | |
| gen_context = self.update_context_image(input_term, gen_context, vae=not understanding_output) | |
| image_shapes = input_term.size[::-1] | |
| cfg_text_context = deepcopy(gen_context) | |
| else: | |
| raise ValueError(f"Unsupported input type: {type(input_term)}") | |
| if understanding_output: # Generate text | |
| yield from self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=text_temperature) | |
| else: # Generate image | |
| if think: | |
| thought_text_parts = [] | |
| for part in self.gen_text(gen_context, max_length=max_think_token_n, do_sample=do_sample, temperature=text_temperature): | |
| yield part # Stream the thought | |
| thought_text_parts.append(part) | |
| full_thought_text = "".join(thought_text_parts) | |
| if full_thought_text: # Only update if thought was generated | |
| gen_context = self.update_context_text(full_thought_text, gen_context) | |
| img = self.gen_image( | |
| image_shape=image_shapes, | |
| gen_context=gen_context, | |
| cfg_text_precontext=cfg_text_context, | |
| cfg_img_precontext=cfg_img_context, | |
| cfg_text_scale=cfg_text_scale, | |
| cfg_img_scale=cfg_img_scale, | |
| cfg_interval=cfg_interval, | |
| timestep_shift=timestep_shift, | |
| num_timesteps=num_timesteps, | |
| cfg_renorm_min=cfg_renorm_min, | |
| cfg_renorm_type=cfg_renorm_type, | |
| ) | |
| yield img | |
| def __call__( | |
| self, | |
| image: Optional[Image.Image] = None, | |
| text: Optional[str] = None, | |
| **kargs | |
| ) -> Any: | |
| input_list = [] | |
| if image is not None: | |
| input_list.append(image) | |
| if text is not None: | |
| input_list.append(text) | |
| if not input_list and not kargs.get('force_empty_input', False): # allow forcing for special cases if needed | |
| return | |
| yield from self.interleave_inference(input_list, **kargs) |