Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2025 Bytedance Ltd. and/or its affiliates. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| import random | |
| from PIL import Image | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from torchvision import transforms | |
| from torchvision.transforms import functional as F | |
| from torchvision.transforms import InterpolationMode | |
| class MaxLongEdgeMinShortEdgeResize(torch.nn.Module): | |
| """Resize the input image so that its longest side and shortest side are within a specified range, | |
| ensuring that both sides are divisible by a specified stride. | |
| Args: | |
| max_size (int): Maximum size for the longest edge of the image. | |
| min_size (int): Minimum size for the shortest edge of the image. | |
| stride (int): Value by which the height and width of the image must be divisible. | |
| max_pixels (int): Maximum pixels for the full image. | |
| interpolation (InterpolationMode): Desired interpolation enum defined by | |
| :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. | |
| If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``, | |
| ``InterpolationMode.BILINEAR``, and ``InterpolationMode.BICUBIC`` are supported. | |
| The corresponding Pillow integer constants, e.g., ``PIL.Image.BILINEAR`` are also accepted. | |
| antialias (bool, optional): Whether to apply antialiasing (default is True). | |
| """ | |
| def __init__( | |
| self, | |
| max_size: int, | |
| min_size: int, | |
| stride: int, | |
| max_pixels: int, | |
| interpolation=InterpolationMode.BICUBIC, | |
| antialias=True | |
| ): | |
| super().__init__() | |
| self.max_size = max_size | |
| self.min_size = min_size | |
| self.stride = stride | |
| self.max_pixels = max_pixels | |
| self.interpolation = interpolation | |
| self.antialias = antialias | |
| def _make_divisible(self, value, stride): | |
| """Ensure the value is divisible by the stride.""" | |
| return max(stride, int(round(value / stride) * stride)) | |
| def _apply_scale(self, width, height, scale): | |
| new_width = round(width * scale) | |
| new_height = round(height * scale) | |
| new_width = self._make_divisible(new_width, self.stride) | |
| new_height = self._make_divisible(new_height, self.stride) | |
| return new_width, new_height | |
| def forward(self, img, img_num=1): | |
| """ | |
| Args: | |
| img (PIL Image): Image to be resized. | |
| img_num (int): Number of images, used to change max_tokens. | |
| Returns: | |
| PIL Image or Tensor: Rescaled image with divisible dimensions. | |
| """ | |
| if isinstance(img, torch.Tensor): | |
| height, width = img.shape[-2:] | |
| else: | |
| width, height = img.size | |
| scale = min(self.max_size / max(width, height), 1.0) | |
| scale = max(scale, self.min_size / min(width, height)) | |
| new_width, new_height = self._apply_scale(width, height, scale) | |
| # Ensure the number of pixels does not exceed max_pixels | |
| if new_width * new_height > self.max_pixels / img_num: | |
| scale = self.max_pixels / img_num / (new_width * new_height) | |
| new_width, new_height = self._apply_scale(new_width, new_height, scale) | |
| # Ensure longest edge does not exceed max_size | |
| if max(new_width, new_height) > self.max_size: | |
| scale = self.max_size / max(new_width, new_height) | |
| new_width, new_height = self._apply_scale(new_width, new_height, scale) | |
| return F.resize(img, (new_height, new_width), self.interpolation, antialias=self.antialias) | |
| class ImageTransform: | |
| def __init__( | |
| self, | |
| max_image_size, | |
| min_image_size, | |
| image_stride, | |
| max_pixels=14*14*9*1024, | |
| image_mean=[0.5, 0.5, 0.5], | |
| image_std=[0.5, 0.5, 0.5] | |
| ): | |
| self.stride = image_stride | |
| self.resize_transform = MaxLongEdgeMinShortEdgeResize( | |
| max_size=max_image_size, | |
| min_size=min_image_size, | |
| stride=image_stride, | |
| max_pixels=max_pixels, | |
| ) | |
| self.to_tensor_transform = transforms.ToTensor() | |
| self.normalize_transform = transforms.Normalize(mean=image_mean, std=image_std, inplace=True) | |
| def __call__(self, img, img_num=1): | |
| img = self.resize_transform(img, img_num=img_num) | |
| img = self.to_tensor_transform(img) | |
| img = self.normalize_transform(img) | |
| return img | |
| def decolorization(image): | |
| gray_image = image.convert('L') | |
| return Image.merge(image.mode, [gray_image] * 3) if image.mode in ('RGB', 'L') else gray_image | |
| def downscale(image, scale_factor): | |
| new_width = int(round(image.width * scale_factor)) | |
| new_height = int(round(image.height * scale_factor)) | |
| new_width = max(1, new_width) | |
| new_height = max(1, new_height) | |
| return image.resize((new_width, new_height), resample=Image.BICUBIC) | |
| def crop(image, crop_factors): | |
| target_h, target_w = crop_factors | |
| img_w, img_h = image.size | |
| if target_h > img_h or target_w > img_w: | |
| raise ValueError("Crop size exceeds image dimensions") | |
| x = random.randint(0, img_w - target_w) | |
| y = random.randint(0, img_h - target_h) | |
| return image.crop((x, y, x + target_w, y + target_h)), [[x, y], [x + target_w, y + target_h]] | |
| def motion_blur_opencv(image, kernel_size=15, angle=0): | |
| # 线性核 | |
| kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32) | |
| kernel[kernel_size // 2, :] = np.ones(kernel_size, dtype=np.float32) | |
| # 旋转核 | |
| center = (kernel_size / 2 - 0.5, kernel_size / 2 - 0.5) | |
| M = cv2.getRotationMatrix2D(center, angle, 1) | |
| rotated_kernel = cv2.warpAffine(kernel, M, (kernel_size, kernel_size)) | |
| # 归一化核 | |
| rotated_kernel /= rotated_kernel.sum() if rotated_kernel.sum() != 0 else 1 | |
| img = np.array(image) | |
| if img.ndim == 2: | |
| blurred = cv2.filter2D(img, -1, rotated_kernel, borderType=cv2.BORDER_REFLECT) | |
| else: | |
| # 对于彩色图像,各通道独立卷积 | |
| blurred = np.zeros_like(img) | |
| for c in range(img.shape[2]): | |
| blurred[..., c] = cv2.filter2D(img[..., c], -1, rotated_kernel, borderType=cv2.BORDER_REFLECT) | |
| return Image.fromarray(blurred.astype(np.uint8)) | |
| def shuffle_patch(image, num_splits, gap_size=2): | |
| """将图像分割为块(允许尺寸不整除),随机打乱后拼接,块间保留间隙""" | |
| h_splits, w_splits = num_splits | |
| img_w, img_h = image.size | |
| base_patch_h = img_h // h_splits | |
| patch_heights = [base_patch_h] * (h_splits - 1) | |
| patch_heights.append(img_h - sum(patch_heights)) | |
| base_patch_w = img_w // w_splits | |
| patch_widths = [base_patch_w] * (w_splits - 1) | |
| patch_widths.append(img_w - sum(patch_widths)) | |
| patches = [] | |
| current_y = 0 | |
| for i in range(h_splits): | |
| current_x = 0 | |
| patch_h = patch_heights[i] | |
| for j in range(w_splits): | |
| patch_w = patch_widths[j] | |
| patch = image.crop((current_x, current_y, current_x + patch_w, current_y + patch_h)) | |
| patches.append(patch) | |
| current_x += patch_w | |
| current_y += patch_h | |
| random.shuffle(patches) | |
| total_width = sum(patch_widths) + (w_splits - 1) * gap_size | |
| total_height = sum(patch_heights) + (h_splits - 1) * gap_size | |
| new_image = Image.new(image.mode, (total_width, total_height), color=(255, 255, 255)) | |
| current_y = 0 # 当前行的起始 Y 坐标 | |
| patch_idx = 0 # 当前处理的块索引 | |
| for i in range(h_splits): | |
| current_x = 0 # 当前列的起始 X 坐标 | |
| patch_h = patch_heights[i] # 当前行块的高度 | |
| for j in range(w_splits): | |
| # 取出打乱后的块 | |
| patch = patches[patch_idx] | |
| patch_w = patch_widths[j] # 当前列块的宽度 | |
| # 粘贴块(左上角坐标为 (current_x, current_y)) | |
| new_image.paste(patch, (current_x, current_y)) | |
| # 更新 X 坐标(下一个块的起始位置 = 当前块宽度 + 间隙) | |
| current_x += patch_w + gap_size | |
| patch_idx += 1 | |
| # 更新 Y 坐标(下一行的起始位置 = 当前行高度 + 间隙) | |
| current_y += patch_h + gap_size | |
| return new_image | |
| def inpainting(image, num_splits, blank_ratio=0.3, blank_color=(255, 255, 255)): | |
| """ | |
| 图像分割后随机空白部分patch,用于inpainting任务 | |
| 参数: | |
| image: PIL.Image 输入图像(RGB模式) | |
| h_splits: int 行分割数(垂直方向分割块数) | |
| w_splits: int 列分割数(水平方向分割块数) | |
| blank_ratio: float 空白patch的比例(0~1) | |
| blank_color: tuple 空白区域的颜色(RGB,如白色(255,255,255)) | |
| 返回: | |
| PIL.Image 处理后拼接的图像 | |
| """ | |
| h_splits, w_splits = num_splits | |
| img_w, img_h = image.size | |
| base_patch_h = img_h // h_splits | |
| patch_heights = [base_patch_h] * (h_splits - 1) | |
| patch_heights.append(img_h - sum(patch_heights)) | |
| base_patch_w = img_w // w_splits | |
| patch_widths = [base_patch_w] * (w_splits - 1) | |
| patch_widths.append(img_w - sum(patch_widths)) | |
| patches = [] | |
| current_y = 0 | |
| for i in range(h_splits): | |
| current_x = 0 | |
| patch_h = patch_heights[i] | |
| for j in range(w_splits): | |
| patch_w = patch_widths[j] | |
| patch = image.crop((current_x, current_y, current_x + patch_w, current_y + patch_h)) | |
| patches.append(patch) | |
| current_x += patch_w | |
| current_y += patch_h | |
| total_patches = h_splits * w_splits | |
| num_blank = int(total_patches * blank_ratio) | |
| num_blank = max(0, min(num_blank, total_patches)) | |
| blank_indices = random.sample(range(total_patches), num_blank) | |
| processed_patches = [] | |
| for idx, patch in enumerate(patches): | |
| if idx in blank_indices: | |
| blank_patch = Image.new("RGB", patch.size, color=blank_color) | |
| processed_patches.append(blank_patch) | |
| else: | |
| processed_patches.append(patch) | |
| # 创建结果图像(尺寸与原图一致) | |
| result_image = Image.new("RGB", (img_w, img_h)) | |
| current_y = 0 | |
| patch_idx = 0 | |
| for i in range(h_splits): | |
| current_x = 0 | |
| patch_h = patch_heights[i] | |
| for j in range(w_splits): | |
| # 取出处理后的patch | |
| patch = processed_patches[patch_idx] | |
| patch_w = patch_widths[j] | |
| # 粘贴到原位置 | |
| result_image.paste(patch, (current_x, current_y)) | |
| current_x += patch_w | |
| patch_idx += 1 | |
| current_y += patch_h | |
| return result_image | |