Spaces:
Runtime error
Runtime error
| # Copyright (c) SenseTime Research. All rights reserved. | |
| import os | |
| import sys | |
| import torch | |
| import numpy as np | |
| sys.path.append(".") | |
| from torch_utils.models import Generator | |
| import click | |
| import cv2 | |
| from typing import List, Optional | |
| import subprocess | |
| import legacy | |
| from edit.edit_helper import conv_warper, decoder, encoder_ifg, encoder_ss, encoder_sefa | |
| """ | |
| Edit generated images with different SOTA methods. | |
| Notes: | |
| 1. We provide some latent directions in the folder, you can play around with them. | |
| 2. ''upper_length'' and ''bottom_length'' of ''attr_name'' are available for demo. | |
| 3. Layers to control and editing strength are set in edit/edit_config.py. | |
| Examples: | |
| \b | |
| # Editing with InterfaceGAN, StyleSpace, and Sefa | |
| python edit.py --network pretrained_models/stylegan_human_v2_1024.pkl --attr_name upper_length \\ | |
| --seeds 61531,61570,61571,61610 --outdir outputs/edit_results | |
| # Editing using inverted latent code | |
| python edit.py ---network outputs/pti/checkpoints/model_test.pkl --attr_name upper_length \\ | |
| --outdir outputs/edit_results --real True --real_w_path outputs/pti/embeddings/test/PTI/test/0.pt --real_img_path aligned_image/test.png | |
| """ | |
| def main( | |
| ctx: click.Context, | |
| ckpt_path: str, | |
| attr_name: str, | |
| truncation: float, | |
| gen_video: bool, | |
| combine: bool, | |
| seeds: Optional[List[int]], | |
| outdir: str, | |
| real: str, | |
| real_w_path: str, | |
| real_img_path: str | |
| ): | |
| ## convert pkl to pth | |
| # if not os.path.exists(ckpt_path.replace('.pkl','.pth')): | |
| legacy.convert(ckpt_path, ckpt_path.replace('.pkl','.pth'), G_only=real) | |
| ckpt_path = ckpt_path.replace('.pkl','.pth') | |
| print("start...", flush=True) | |
| config = {"latent" : 512, "n_mlp" : 8, "channel_multiplier": 2} | |
| generator = Generator( | |
| size = 1024, | |
| style_dim=config["latent"], | |
| n_mlp=config["n_mlp"], | |
| channel_multiplier=config["channel_multiplier"] | |
| ) | |
| generator.load_state_dict(torch.load(ckpt_path)['g_ema']) | |
| generator.eval().cuda() | |
| with torch.no_grad(): | |
| mean_path = os.path.join('edit','mean_latent.pkl') | |
| if not os.path.exists(mean_path): | |
| mean_n = 3000 | |
| mean_latent = generator.mean_latent(mean_n).detach() | |
| legacy.save_obj(mean_latent, mean_path) | |
| else: | |
| mean_latent = legacy.load_pkl(mean_path).cuda() | |
| finals = [] | |
| ## -- selected sample seeds -- ## | |
| # seeds = [60948,60965,61174,61210,61511,61598,61610] #bottom -> long | |
| # [60941,61064,61103,61313,61531,61570,61571] # bottom -> short | |
| # [60941,60965,61064,61103,6117461210,61531,61570,61571,61610] # upper --> long | |
| # [60948,61313,61511,61598] # upper --> short | |
| if real: seeds = [0] | |
| for t in seeds: | |
| if real: # now assume process single real image only | |
| if real_img_path: | |
| real_image = cv2.imread(real_img_path) | |
| real_image = cv2.cvtColor(real_image, cv2.COLOR_BGR2RGB) | |
| import torchvision.transforms as transforms | |
| transform = transforms.Compose( # normalize to (-1, 1) | |
| [transforms.ToTensor(), | |
| transforms.Normalize(mean=(.5,.5,.5), std=(.5,.5,.5))] | |
| ) | |
| real_image = transform(real_image).unsqueeze(0).cuda() | |
| test_input = torch.load(real_w_path) | |
| output, _ = generator(test_input, False, truncation=1,input_is_latent=True, real=True) | |
| else: # generate image from random seeds | |
| test_input = torch.from_numpy(np.random.RandomState(t).randn(1, 512)).float().cuda() # torch.Size([1, 512]) | |
| output, _ = generator([test_input], False, truncation=truncation, truncation_latent=mean_latent, real=real) | |
| # interfacegan | |
| style_space, latent, noise = encoder_ifg(generator, test_input, attr_name, truncation, mean_latent,real=real) | |
| image1 = decoder(generator, style_space, latent, noise) | |
| # stylespace | |
| style_space, latent, noise = encoder_ss(generator, test_input, attr_name, truncation, mean_latent,real=real) | |
| image2 = decoder(generator, style_space, latent, noise) | |
| # sefa | |
| latent, noise = encoder_sefa(generator, test_input, attr_name, truncation, mean_latent,real=real) | |
| image3, _ = generator([latent], noise=noise, input_is_latent=True) | |
| if real_img_path: | |
| final = torch.cat((real_image, output, image1, image2, image3), 3) | |
| else: | |
| final = torch.cat((output, image1, image2, image3), 3) | |
| # legacy.visual(output, f'{outdir}/{attr_name}_{t:05d}_raw.jpg') | |
| # legacy.visual(image1, f'{outdir}/{attr_name}_{t:05d}_ifg.jpg') | |
| # legacy.visual(image2, f'{outdir}/{attr_name}_{t:05d}_ss.jpg') | |
| # legacy.visual(image3, f'{outdir}/{attr_name}_{t:05d}_sefa.jpg') | |
| if gen_video: | |
| total_step = 90 | |
| if real: | |
| video_ifg_path = f"{outdir}/video/ifg_{attr_name}_{real_w_path.split('/')[-2]}/" | |
| video_ss_path = f"{outdir}/video/ss_{attr_name}_{real_w_path.split('/')[-2]}/" | |
| video_sefa_path = f"{outdir}/video/ss_{attr_name}_{real_w_path.split('/')[-2]}/" | |
| else: | |
| video_ifg_path = f"{outdir}/video/ifg_{attr_name}_{t:05d}/" | |
| video_ss_path = f"{outdir}/video/ss_{attr_name}_{t:05d}/" | |
| video_sefa_path = f"{outdir}/video/ss_{attr_name}_{t:05d}/" | |
| video_comb_path = f"{outdir}/video/tmp" | |
| if combine: | |
| if not os.path.exists(video_comb_path): | |
| os.makedirs(video_comb_path) | |
| else: | |
| if not os.path.exists(video_ifg_path): | |
| os.makedirs(video_ifg_path) | |
| if not os.path.exists(video_ss_path): | |
| os.makedirs(video_ss_path) | |
| if not os.path.exists(video_sefa_path): | |
| os.makedirs(video_sefa_path) | |
| for i in range(total_step): | |
| style_space, latent, noise = encoder_ifg(generator, test_input, attr_name, truncation, mean_latent, step=i, total=total_step,real=real) | |
| image1 = decoder(generator, style_space, latent, noise) | |
| style_space, latent, noise = encoder_ss(generator, test_input, attr_name, truncation, mean_latent, step=i, total=total_step,real=real) | |
| image2 = decoder(generator, style_space, latent, noise) | |
| latent, noise = encoder_sefa(generator, test_input, attr_name, truncation, mean_latent, step=i, total=total_step,real=real) | |
| image3, _ = generator([latent], noise=noise, input_is_latent=True) | |
| if combine: | |
| if real_img_path: | |
| comb_img = torch.cat((real_image, output, image1, image2, image3), 3) | |
| else: | |
| comb_img = torch.cat((output, image1, image2, image3), 3) | |
| legacy.visual(comb_img, os.path.join(video_comb_path, f'{i:05d}.jpg')) | |
| else: | |
| legacy.visual(image1, os.path.join(video_ifg_path, f'{i:05d}.jpg')) | |
| legacy.visual(image2, os.path.join(video_ss_path, f'{i:05d}.jpg')) | |
| if combine: | |
| cmd=f"ffmpeg -hide_banner -loglevel error -y -r 30 -i {video_comb_path}/%05d.jpg -vcodec libx264 -pix_fmt yuv420p {video_ifg_path.replace('ifg_', '')[:-1] + '.mp4'}" | |
| subprocess.call(cmd, shell=True) | |
| else: | |
| cmd=f"ffmpeg -hide_banner -loglevel error -y -r 30 -i {video_ifg_path}/%05d.jpg -vcodec libx264 -pix_fmt yuv420p {video_ifg_path[:-1] + '.mp4'}" | |
| subprocess.call(cmd, shell=True) | |
| cmd=f"ffmpeg -hide_banner -loglevel error -y -r 30 -i {video_ss_path}/%05d.jpg -vcodec libx264 -pix_fmt yuv420p {video_ss_path[:-1] + '.mp4'}" | |
| subprocess.call(cmd, shell=True) | |
| # interfacegan, stylespace, sefa | |
| finals.append(final) | |
| final = torch.cat(finals, 2) | |
| legacy.visual(final, os.path.join(outdir,'final.jpg')) | |
| if __name__ == "__main__": | |
| main() |