# Copyright 2025-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License governing permissions and limitations under the License. import pytest import torch from transformers import AutoModelForSequenceClassification from peft import ( AdaLoraConfig, BOFTConfig, BoneConfig, C3AConfig, FourierFTConfig, HRAConfig, IA3Config, LoraConfig, MissConfig, OFTConfig, PrefixTuningConfig, PromptEncoderConfig, PromptTuningConfig, PromptTuningInit, RoadConfig, ShiraConfig, VBLoRAConfig, VeraConfig, WaveFTConfig, get_peft_model, ) from peft.utils.other import ModulesToSaveWrapper from .testing_common import PeftCommonTester from .testing_utils import hub_online_once PEFT_SEQ_CLS_MODELS_TO_TEST = [ "hf-internal-testing/tiny-random-BertForSequenceClassification", "hf-internal-testing/tiny-random-RobertaForSequenceClassification", "trl-internal-testing/tiny-LlamaForSequenceClassification-3.2", ] ALL_CONFIGS = [ ( AdaLoraConfig, { "task_type": "SEQ_CLS", "target_modules": None, "total_step": 1, }, ), ( BOFTConfig, { "task_type": "SEQ_CLS", "target_modules": None, }, ), ( BoneConfig, { "task_type": "SEQ_CLS", "target_modules": None, "r": 2, }, ), ( MissConfig, { "task_type": "SEQ_CLS", "target_modules": None, "r": 2, }, ), ( FourierFTConfig, { "task_type": "SEQ_CLS", "n_frequency": 10, "target_modules": None, }, ), ( HRAConfig, { "task_type": "SEQ_CLS", "target_modules": None, }, ), ( IA3Config, { "task_type": "SEQ_CLS", "target_modules": None, "feedforward_modules": None, }, ), ( LoraConfig, { "task_type": "SEQ_CLS", "r": 8, "lora_alpha": 32, "target_modules": None, "lora_dropout": 0.05, "bias": "none", }, ), # LoRA + trainable tokens ( LoraConfig, { "task_type": "SEQ_CLS", "r": 8, "lora_alpha": 32, "target_modules": None, "lora_dropout": 0.05, "bias": "none", "trainable_token_indices": [0, 1, 3], }, ), ( OFTConfig, { "task_type": "SEQ_CLS", "target_modules": None, }, ), ( PrefixTuningConfig, { "task_type": "SEQ_CLS", "num_virtual_tokens": 10, }, ), ( PromptEncoderConfig, { "task_type": "SEQ_CLS", "num_virtual_tokens": 10, "encoder_hidden_size": 32, }, ), ( PromptTuningConfig, { "task_type": "SEQ_CLS", "num_virtual_tokens": 10, }, ), ( RoadConfig, { "task_type": "SEQ_CLS", "variant": "road_1", "group_size": 2, }, ), ( ShiraConfig, { "r": 1, "task_type": "SEQ_CLS", "target_modules": None, "init_weights": False, }, ), ( VBLoRAConfig, { "task_type": "SEQ_CLS", "target_modules": None, "vblora_dropout": 0.05, "vector_length": 1, "num_vectors": 2, }, ), ( VeraConfig, { "task_type": "SEQ_CLS", "r": 8, "target_modules": None, "vera_dropout": 0.05, "projection_prng_key": 0xFF, "d_initial": 0.1, "save_projection": True, "bias": "none", }, ), ( C3AConfig, { "task_type": "SEQ_CLS", "block_size": 1, "target_modules": None, }, ), ( WaveFTConfig, { "task_type": "SEQ_CLS", "n_frequency": 8, "target_modules": None, }, ), ] class TestSequenceClassificationModels(PeftCommonTester): r""" Tests for basic coverage of AutoModelForSequenceClassification and classification-specific cases. Most of the functionality is probably already covered by other tests. """ transformers_class = AutoModelForSequenceClassification def skipTest(self, reason=""): # for backwards compatibility with unittest style test classes pytest.skip(reason) def prepare_inputs_for_testing(self): input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) return {"input_ids": input_ids, "attention_mask": attention_mask} @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_attributes_parametrized(self, model_id, config_cls, config_kwargs): self._test_model_attr(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_adapter_name(self, model_id, config_cls, config_kwargs): self._test_adapter_name(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs): self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_prompt_tuning_text_prepare_for_training(self, model_id, config_cls, config_kwargs): if config_cls != PromptTuningConfig: pytest.skip(f"This test does not apply to {config_cls}") config_kwargs = config_kwargs.copy() config_kwargs["prompt_tuning_init"] = PromptTuningInit.TEXT config_kwargs["prompt_tuning_init_text"] = "This is a test prompt." config_kwargs["tokenizer_name_or_path"] = model_id self._test_prepare_for_training(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained(self, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained_pickle(self, model_id, config_cls, config_kwargs): self._test_save_pretrained(model_id, config_cls, config_kwargs.copy(), safe_serialization=False) @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_save_pretrained_selected_adapters_pickle(self, model_id, config_cls, config_kwargs): self._test_save_pretrained_selected_adapters( model_id, config_cls, config_kwargs.copy(), safe_serialization=False ) @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs): self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs.copy()) @pytest.mark.parametrize("model_id", PEFT_SEQ_CLS_MODELS_TO_TEST) @pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) def test_modules_to_save_correctly_set(self, model_id, config_cls, config_kwargs): # tests for a regression, introduced via #2220, where modules_to_save was not applied to prompt learning methods with hub_online_once(model_id): model = self.transformers_class.from_pretrained(model_id) config = config_cls( base_model_name_or_path=model_id, **config_kwargs, ) model = get_peft_model(model, config) base_model = model.get_base_model() # classifier layer is called either "classifier" or "score" classifier = getattr(base_model, "classifier", getattr(base_model, "score", None)) if classifier is None: raise ValueError(f"Could not determine classifier layer name for {model_id}, please fix the test") assert isinstance(classifier, ModulesToSaveWrapper)