Ramzes / tests /test_multitask_prompt_tuning.py
Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import pytest
import torch
from torch.testing import assert_close
from transformers import AutoModelForCausalLM
from peft import get_peft_model
from peft.peft_model import PeftModel
from peft.tuners.multitask_prompt_tuning import MultitaskPromptTuningConfig, MultitaskPromptTuningInit
from peft.utils import infer_device
from peft.utils.other import WEIGHTS_NAME, prepare_model_for_kbit_training
from peft.utils.save_and_load import get_peft_model_state_dict
MODELS_TO_TEST = [
"trl-internal-testing/tiny-random-LlamaForCausalLM",
]
class TestMultiTaskPromptTuning:
"""
Tests for the MultiTaskPromptTuning model.
"""
@pytest.fixture
def config(cls) -> MultitaskPromptTuningConfig:
return MultitaskPromptTuningConfig(
task_type="CAUSAL_LM",
num_virtual_tokens=50,
num_tasks=3,
prompt_tuning_init_text=(
"classify the following into either positive or negative, or entailment, neutral or contradiction:"
),
)
transformers_class = AutoModelForCausalLM
torch_device = infer_device()
@pytest.mark.parametrize("model_id", MODELS_TO_TEST)
def test_prepare_for_training(self, model_id, config):
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
dummy_input = torch.LongTensor([[1, 1, 1]]).to(self.torch_device)
dummy_output = model.get_input_embeddings()(dummy_input)
assert not dummy_output.requires_grad
@pytest.mark.parametrize("model_id", MODELS_TO_TEST)
def test_prepare_for_int8_training(self, model_id, config):
model = AutoModelForCausalLM.from_pretrained(model_id)
model = prepare_model_for_kbit_training(model)
model = model.to(self.torch_device)
for param in model.parameters():
assert not param.requires_grad
model = get_peft_model(model, config)
# For backward compatibility
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
dummy_input = torch.LongTensor([[1, 1, 1]]).to(self.torch_device)
dummy_output = model.get_input_embeddings()(dummy_input)
assert dummy_output.requires_grad
@pytest.mark.parametrize("model_id", MODELS_TO_TEST)
def test_save_pretrained(self, model_id, config):
seed = 420
torch.manual_seed(seed)
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname)
torch.manual_seed(seed)
model_from_pretrained = AutoModelForCausalLM.from_pretrained(model_id)
model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname)
# check if the state dicts are equal
state_dict = get_peft_model_state_dict(model)
state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained)
# check if same keys
assert state_dict.keys() == state_dict_from_pretrained.keys()
# Check that the number of saved parameters is 4 -- 2 layers of (tokens and gate).
assert len(state_dict) == 3
# check if tensors equal
for key in state_dict.keys():
assert torch.allclose(
state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device)
)
# check if `adapter_model.safetensors` is present
assert os.path.exists(os.path.join(tmp_dirname, "adapter_model.safetensors"))
# check if `adapter_config.json` is present
assert os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))
# check if `pytorch_model.bin` is not present
assert not os.path.exists(os.path.join(tmp_dirname, "pytorch_model.bin"))
# check if `config.json` is not present
assert not os.path.exists(os.path.join(tmp_dirname, "config.json"))
@pytest.mark.parametrize("model_id", MODELS_TO_TEST)
def test_save_pretrained_regression(self, model_id, config):
seed = 420
torch.manual_seed(seed)
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
with tempfile.TemporaryDirectory() as tmp_dirname:
model.save_pretrained(tmp_dirname, safe_serialization=False)
torch.manual_seed(seed)
model_from_pretrained = AutoModelForCausalLM.from_pretrained(model_id)
model_from_pretrained = PeftModel.from_pretrained(model_from_pretrained, tmp_dirname)
# check if the state dicts are equal
state_dict = get_peft_model_state_dict(model)
state_dict_from_pretrained = get_peft_model_state_dict(model_from_pretrained)
# check if same keys
assert state_dict.keys() == state_dict_from_pretrained.keys()
# Check that the number of saved parameters is 4 -- 2 layers of (tokens and gate).
assert len(state_dict) == 3
# check if tensors equal
for key in state_dict.keys():
assert torch.allclose(
state_dict[key].to(self.torch_device), state_dict_from_pretrained[key].to(self.torch_device)
)
# check if `adapter_model.bin` is present for regression
assert os.path.exists(os.path.join(tmp_dirname, "adapter_model.bin"))
# check if `adapter_config.json` is present
assert os.path.exists(os.path.join(tmp_dirname, "adapter_config.json"))
# check if `pytorch_model.bin` is not present
assert not os.path.exists(os.path.join(tmp_dirname, "pytorch_model.bin"))
# check if `config.json` is not present
assert not os.path.exists(os.path.join(tmp_dirname, "config.json"))
@pytest.mark.parametrize("model_id", MODELS_TO_TEST)
def test_generate(self, model_id, config):
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
task_ids = torch.LongTensor([1, 2]).to(self.torch_device)
# check if `generate` works
_ = model.generate(input_ids=input_ids, attention_mask=attention_mask, task_ids=task_ids)
# check if `generate` works if positional arguments are passed
_ = model.generate(input_ids, attention_mask=attention_mask, task_ids=task_ids)
@pytest.mark.parametrize("model_id", MODELS_TO_TEST)
def test_use_cache(self, model_id, config):
"""Test that MultiTaskPromptTuning works when Llama config use_cache=True."""
torch.manual_seed(0)
input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
task_ids = torch.LongTensor([1, 2]).to(self.torch_device)
original = AutoModelForCausalLM.from_pretrained(model_id)
mpt = get_peft_model(original, config)
mpt = mpt.to(self.torch_device)
expected = mpt.generate(input_ids=input_ids, max_length=8, task_ids=task_ids)
# Set use_cache = True and generate output again.
mpt.base_model.config.use_cache = True
actual = mpt.generate(input_ids=input_ids, max_length=8, task_ids=task_ids)
assert_close(expected, actual, rtol=0, atol=0)
@pytest.mark.parametrize("model_id", MODELS_TO_TEST)
def test_bf16_inference(self, model_id, config):
"""Test that MultiTaskPromptTuning works when Llama using a half-precision model."""
input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
task_ids = torch.tensor([1, 2]).to(self.torch_device)
original = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
mpt = get_peft_model(original, config)
mpt = mpt.to(self.torch_device)
_ = mpt.generate(input_ids=input_ids, task_ids=task_ids)
@pytest.mark.parametrize("model_id", MODELS_TO_TEST)
def test_generate_text_with_random_init(self, model_id, config) -> None:
torch.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(model_id)
config.prompt_tuning_init = MultitaskPromptTuningInit.RANDOM
model = get_peft_model(model, config)
model = model.to(self.torch_device)
input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
task_ids = torch.LongTensor([0]).to(self.torch_device)
# check if `generate` works
_ = model.generate(input_ids=input_ids, attention_mask=attention_mask, task_ids=task_ids)
with pytest.raises(ValueError):
# check if `generate` raises an error if task_ids are not passed
_ = model.generate(input_ids, attention_mask=attention_mask)
@pytest.mark.parametrize(
"prompt_tuning_init",
[
MultitaskPromptTuningInit.AVERAGE_SOURCE_TASKS,
MultitaskPromptTuningInit.EXACT_SOURCE_TASK,
MultitaskPromptTuningInit.ONLY_SOURCE_SHARED,
],
)
@pytest.mark.parametrize("model_id", MODELS_TO_TEST)
def test_generate_text_with_other_init(self, prompt_tuning_init, model_id, config) -> None:
# This test is flaky, hence fixing the seed. The reason is somehow related to:
# https://github.com/huggingface/transformers/blob/e786844425b6b1112c76513d66217ce2fe6aea41/src/transformers/generation/utils.py#L2691
# When an EOS token is generated, the loop is exited and the pytest.raises at the bottom is not triggered
# because `forward` of the PEFT model, which should raise the error, is never called.
torch.manual_seed(42) # seed 43 fails with transformers v4.42.3 and torch v2.3.1
with tempfile.TemporaryDirectory() as tmp_dirname:
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, config)
model.save_pretrained(tmp_dirname, safe_serialization=False) # bc torch.load is used
config = MultitaskPromptTuningConfig(
task_type="CAUSAL_LM",
num_virtual_tokens=50,
num_tasks=1,
prompt_tuning_init_text=(
"classify the following into either positive or negative, or entailment, neutral or contradiction:"
),
prompt_tuning_init=prompt_tuning_init,
prompt_tuning_init_state_dict_path=os.path.join(tmp_dirname, WEIGHTS_NAME),
)
model = AutoModelForCausalLM.from_pretrained(model_id)
model = get_peft_model(model, config)
model = model.to(self.torch_device)
input_ids = torch.LongTensor([[1, 1, 1], [2, 1, 2]]).to(self.torch_device)
attention_mask = torch.LongTensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device)
task_ids = torch.LongTensor([0]).to(self.torch_device)
# check if `generate` works
_ = model.generate(input_ids=input_ids, attention_mask=attention_mask, task_ids=task_ids)
with pytest.raises(ValueError, match="task_ids cannot be None"):
# check if `generate` raises an error if task_ids are not passed
_ = model.generate(input_ids, attention_mask=attention_mask)