|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pytest |
|
|
import torch |
|
|
from transformers import AutoModel |
|
|
|
|
|
from peft import ( |
|
|
AdaLoraConfig, |
|
|
BOFTConfig, |
|
|
BoneConfig, |
|
|
C3AConfig, |
|
|
FourierFTConfig, |
|
|
HRAConfig, |
|
|
IA3Config, |
|
|
LoraConfig, |
|
|
MissConfig, |
|
|
OFTConfig, |
|
|
PrefixTuningConfig, |
|
|
PromptEncoderConfig, |
|
|
PromptLearningConfig, |
|
|
PromptTuningConfig, |
|
|
RoadConfig, |
|
|
ShiraConfig, |
|
|
VBLoRAConfig, |
|
|
VeraConfig, |
|
|
WaveFTConfig, |
|
|
) |
|
|
|
|
|
from .testing_common import PeftCommonTester |
|
|
from .testing_utils import set_init_weights_false |
|
|
|
|
|
|
|
|
PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST = [ |
|
|
"hf-internal-testing/tiny-random-BertModel", |
|
|
"hf-internal-testing/tiny-random-RobertaModel", |
|
|
"hf-internal-testing/tiny-random-DebertaModel", |
|
|
"hf-internal-testing/tiny-random-DebertaV2Model", |
|
|
] |
|
|
|
|
|
|
|
|
ALL_CONFIGS = [ |
|
|
( |
|
|
AdaLoraConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"target_modules": None, |
|
|
"total_step": 1, |
|
|
}, |
|
|
), |
|
|
( |
|
|
BOFTConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"target_modules": None, |
|
|
}, |
|
|
), |
|
|
( |
|
|
BoneConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"target_modules": None, |
|
|
"r": 2, |
|
|
}, |
|
|
), |
|
|
( |
|
|
MissConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"target_modules": None, |
|
|
"r": 2, |
|
|
}, |
|
|
), |
|
|
( |
|
|
FourierFTConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"n_frequency": 10, |
|
|
"target_modules": None, |
|
|
}, |
|
|
), |
|
|
( |
|
|
HRAConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"target_modules": None, |
|
|
}, |
|
|
), |
|
|
( |
|
|
IA3Config, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"target_modules": None, |
|
|
"feedforward_modules": None, |
|
|
}, |
|
|
), |
|
|
( |
|
|
LoraConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"r": 8, |
|
|
"lora_alpha": 32, |
|
|
"target_modules": None, |
|
|
"lora_dropout": 0.05, |
|
|
"bias": "none", |
|
|
}, |
|
|
), |
|
|
|
|
|
( |
|
|
LoraConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"r": 8, |
|
|
"lora_alpha": 32, |
|
|
"target_modules": None, |
|
|
"lora_dropout": 0.05, |
|
|
"bias": "none", |
|
|
"trainable_token_indices": [0, 1, 3], |
|
|
}, |
|
|
), |
|
|
( |
|
|
OFTConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"target_modules": None, |
|
|
}, |
|
|
), |
|
|
( |
|
|
PrefixTuningConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"num_virtual_tokens": 10, |
|
|
}, |
|
|
), |
|
|
( |
|
|
PromptEncoderConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"num_virtual_tokens": 10, |
|
|
"encoder_hidden_size": 32, |
|
|
}, |
|
|
), |
|
|
( |
|
|
PromptTuningConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"num_virtual_tokens": 10, |
|
|
}, |
|
|
), |
|
|
( |
|
|
RoadConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"variant": "road_1", |
|
|
"group_size": 2, |
|
|
}, |
|
|
), |
|
|
( |
|
|
ShiraConfig, |
|
|
{ |
|
|
"r": 1, |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"target_modules": None, |
|
|
"init_weights": False, |
|
|
}, |
|
|
), |
|
|
( |
|
|
VBLoRAConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"target_modules": None, |
|
|
"vblora_dropout": 0.05, |
|
|
"vector_length": 1, |
|
|
"num_vectors": 2, |
|
|
}, |
|
|
), |
|
|
( |
|
|
VeraConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"r": 8, |
|
|
"target_modules": None, |
|
|
"vera_dropout": 0.05, |
|
|
"projection_prng_key": 0xFF, |
|
|
"d_initial": 0.1, |
|
|
"save_projection": True, |
|
|
"bias": "none", |
|
|
}, |
|
|
), |
|
|
( |
|
|
C3AConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"block_size": 1, |
|
|
"target_modules": None, |
|
|
}, |
|
|
), |
|
|
( |
|
|
WaveFTConfig, |
|
|
{ |
|
|
"task_type": "FEATURE_EXTRACTION", |
|
|
"n_frequency": 8, |
|
|
"target_modules": None, |
|
|
}, |
|
|
), |
|
|
] |
|
|
|
|
|
|
|
|
def skip_non_prompt_learning(config_cls): |
|
|
if not issubclass(config_cls, PromptLearningConfig) or (config_cls == PrefixTuningConfig): |
|
|
pytest.skip("Skip tests that are not prompt learning or that are prefix tuning") |
|
|
|
|
|
|
|
|
def skip_deberta_lora_tests(config_cls, model_id): |
|
|
if "deberta" not in model_id.lower(): |
|
|
return |
|
|
|
|
|
to_skip = ["lora", "ia3", "boft", "vera", "fourierft", "hra", "bone", "randlora"] |
|
|
config_name = config_cls.__name__.lower() |
|
|
if any(k in config_name for k in to_skip): |
|
|
pytest.skip(f"Skip tests that use {config_name} for Deberta models") |
|
|
|
|
|
|
|
|
def skip_deberta_pt_tests(config_cls, model_id): |
|
|
if "deberta" not in model_id.lower(): |
|
|
return |
|
|
|
|
|
to_skip = ["prefix"] |
|
|
config_name = config_cls.__name__.lower() |
|
|
if any(k in config_name for k in to_skip): |
|
|
pytest.skip(f"Skip tests that use {config_name} for Deberta models") |
|
|
|
|
|
|
|
|
class TestPeftFeatureExtractionModel(PeftCommonTester): |
|
|
""" |
|
|
Test if the PeftModel behaves as expected. This includes: |
|
|
- test if the model has the expected methods |
|
|
""" |
|
|
|
|
|
transformers_class = AutoModel |
|
|
|
|
|
def skipTest(self, reason=""): |
|
|
|
|
|
pytest.skip(reason) |
|
|
|
|
|
def prepare_inputs_for_testing(self): |
|
|
input_ids = torch.tensor([[1, 1, 1], [1, 2, 1]]).to(self.torch_device) |
|
|
attention_mask = torch.tensor([[1, 1, 1], [1, 0, 1]]).to(self.torch_device) |
|
|
|
|
|
input_dict = { |
|
|
"input_ids": input_ids, |
|
|
"attention_mask": attention_mask, |
|
|
} |
|
|
|
|
|
return input_dict |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_attributes_parametrized(self, model_id, config_cls, config_kwargs): |
|
|
self._test_model_attr(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_adapter_name(self, model_id, config_cls, config_kwargs): |
|
|
self._test_adapter_name(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_prepare_for_training_parametrized(self, model_id, config_cls, config_kwargs): |
|
|
self._test_prepare_for_training(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_save_pretrained(self, model_id, config_cls, config_kwargs): |
|
|
self._test_save_pretrained(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_save_pretrained_selected_adapters(self, model_id, config_cls, config_kwargs): |
|
|
self._test_save_pretrained_selected_adapters(model_id, config_cls, config_kwargs) |
|
|
|
|
|
def test_load_model_low_cpu_mem_usage(self): |
|
|
self._test_load_model_low_cpu_mem_usage(PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST[0], LoraConfig, {}) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_from_pretrained_config_construction(self, model_id, config_cls, config_kwargs): |
|
|
self._test_from_pretrained_config_construction(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_merge_layers(self, model_id, config_cls, config_kwargs): |
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs) |
|
|
self._test_merge_layers(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_training(self, model_id, config_cls, config_kwargs): |
|
|
self._test_training(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_training_prompt_learning_tasks(self, model_id, config_cls, config_kwargs): |
|
|
skip_deberta_pt_tests(config_cls, model_id) |
|
|
self._test_training_prompt_learning_tasks(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_training_layer_indexing(self, model_id, config_cls, config_kwargs): |
|
|
self._test_training_layer_indexing(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_training_gradient_checkpointing(self, model_id, config_cls, config_kwargs): |
|
|
skip_deberta_lora_tests(config_cls, model_id) |
|
|
self._test_training_gradient_checkpointing(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_inference_safetensors(self, model_id, config_cls, config_kwargs): |
|
|
self._test_inference_safetensors(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_peft_model_device_map(self, model_id, config_cls, config_kwargs): |
|
|
self._test_peft_model_device_map(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_delete_adapter(self, model_id, config_cls, config_kwargs): |
|
|
self._test_delete_adapter(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_delete_inactive_adapter(self, model_id, config_cls, config_kwargs): |
|
|
self._test_delete_inactive_adapter(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_unload_adapter(self, model_id, config_cls, config_kwargs): |
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs) |
|
|
self._test_unload_adapter(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_weighted_combination_of_adapters(self, model_id, config_cls, config_kwargs): |
|
|
config_kwargs = set_init_weights_false(config_cls, config_kwargs) |
|
|
self._test_weighted_combination_of_adapters(model_id, config_cls, config_kwargs) |
|
|
|
|
|
@pytest.mark.parametrize("model_id", PEFT_FEATURE_EXTRACTION_MODELS_TO_TEST) |
|
|
@pytest.mark.parametrize("config_cls,config_kwargs", ALL_CONFIGS) |
|
|
def test_passing_input_embeds_works(self, model_id, config_cls, config_kwargs): |
|
|
skip_non_prompt_learning(config_cls) |
|
|
self._test_passing_input_embeds_works("test input embeds work", model_id, config_cls, config_kwargs) |
|
|
|