Ramzes / src /peft /utils /save_and_load.py
Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import os
import platform
import re
import warnings
from typing import Optional
import huggingface_hub
import torch
from huggingface_hub import file_exists, hf_hub_download
from huggingface_hub.errors import EntryNotFoundError, LocalEntryNotFoundError
from safetensors.torch import load_file as safe_load_file
from transformers.utils import http_user_agent
from peft.mapping import PEFT_TYPE_TO_PREFIX_MAPPING
from .constants import INCLUDE_LINEAR_LAYERS_SHORTHAND
from .other import (
EMBEDDING_LAYER_NAMES,
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
AuxiliaryTrainingWrapper,
check_file_exists_on_hf_hub,
infer_device,
match_target_against_key,
)
from .peft_types import PeftType
def has_valid_embedding_base_layer(layer):
"""Check if the layer has an embedding base layer"""
return hasattr(layer, "base_layer") and isinstance(layer.base_layer, (torch.nn.Linear, torch.nn.Embedding))
def get_embedding_layer_name(model, layer, is_embedding_in_target_modules):
"""Get the name of the embedding module for a given layer."""
for name, module in model.named_modules():
if (not is_embedding_in_target_modules and module == layer) or module == getattr(layer, "base_layer", None):
return name
return None
def get_peft_model_state_dict(
model, state_dict=None, adapter_name="default", unwrap_compiled=False, save_embedding_layers="auto"
):
"""
Get the state dict of the given adapter of the PEFT model.
This only includes the PEFT parameters, not the parameters of the base model. Thus the returned `state_dict` is
generally small compared to the full model size. To retrieve the full `state_dict`, just call `model.state_dict()`.
Note that the adapter name is removed from the `state_dict`, as this is just an arbitrary name that can be changed
when loading the adapter. So e.g. if the adapter name is `'default'` and the original key is
`'model.q_proj.lora_A.default.weight'`, the returned key will be `'model.q_proj.lora_A.weight'`. Use this function
in conjunction with [`set_peft_model_state_dict`] to take care of the adapter name when loading weights.
Args:
model ([`PeftModel`]): The Peft model. When using torch.nn.DistributedDataParallel, DeepSpeed or FSDP,
the model should be the underlying model/unwrapped model (i.e. model.module).
state_dict (`dict`, *optional*, defaults to `None`):
The state dict of the model. If not provided, the state dict of the passed model will be used.
adapter_name (`str`, *optional*, defaults to `"default"`):
The name of the adapter whose state dict should be returned.
unwrap_compiled (`bool`, *optional*, defaults to `False`):
Whether to unwrap the model if torch.compile was used.
save_embedding_layers (`Union[bool, str]`, , *optional*, defaults to `auto`):
If `True`, save the embedding layers in addition to adapter weights. If `auto`, checks the common embedding
layers `peft.utils.other.EMBEDDING_LAYER_NAMES` in config's `target_modules` when available. Based on it
sets the boolean flag. This only works for 🤗 transformers models.
"""
if unwrap_compiled:
model = getattr(model, "_orig_mod", model)
config = model.peft_config[adapter_name]
if state_dict is None:
state_dict = model.state_dict()
# TUNER SPECIFIC CODE
if config.peft_type in (PeftType.LORA, PeftType.ADALORA):
# to_return = lora_state_dict(model, bias=model.peft_config.bias)
# adapted from `https://github.com/microsoft/LoRA/blob/main/loralib/utils.py`
# to be used directly with the state dict which is necessary when using DeepSpeed or FSDP
bias = config.bias
if bias == "none":
to_return = {k: state_dict[k] for k in state_dict if "lora_" in k}
elif bias == "all":
to_return = {k: state_dict[k] for k in state_dict if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
for k in state_dict:
if "lora_" in k:
to_return[k] = state_dict[k]
bias_name = k.split("lora_")[0] + "bias"
if bias_name in state_dict:
to_return[bias_name] = state_dict[bias_name]
else:
raise NotImplementedError
to_return = {k: v for k, v in to_return.items() if (("lora_" in k and adapter_name in k) or ("bias" in k))}
if config.peft_type == PeftType.ADALORA:
rank_pattern = config.rank_pattern
if rank_pattern is not None:
rank_pattern = {k.replace(f".{adapter_name}", ""): v for k, v in rank_pattern.items()}
config.rank_pattern = rank_pattern
to_return = model.resize_state_dict_by_rank_pattern(rank_pattern, to_return, adapter_name)
if config.use_dora:
# Here we take care of a refactor of DoRA which changed lora_magnitude_vector from a ParameterDict to a
# ModuleDict with a DoraLayer instance. The old parameter is now the "weight" attribute of that layer. Since
# we want the state_dict format not to change, we remove the "weight" part.
new_dora_suffix = f"lora_magnitude_vector.{adapter_name}.weight"
def renamed_dora_weights(k):
if k.endswith(new_dora_suffix):
k = k[:-7] # remove ".weight"
return k
to_return = {renamed_dora_weights(k): v for k, v in to_return.items()}
elif config.peft_type == PeftType.BOFT:
bias = config.bias
if bias == "none":
to_return = {k: state_dict[k] for k in state_dict if "boft_" in k}
elif bias == "all":
to_return = {k: state_dict[k] for k in state_dict if "boft_" in k or "bias" in k}
elif bias == "boft_only":
to_return = {}
for k in state_dict:
if "boft_" in k:
to_return[k] = state_dict[k]
bias_name = k.split("boft_")[0] + "bias"
if bias_name in state_dict:
to_return[bias_name] = state_dict[bias_name]
else:
raise NotImplementedError
elif config.peft_type == PeftType.ADAPTION_PROMPT:
to_return = {k: state_dict[k] for k in state_dict if k.split(".")[-1].startswith("adaption_")}
elif config.is_prompt_learning:
to_return = {}
if config.peft_type == PeftType.MULTITASK_PROMPT_TUNING:
to_return["prefix_task_cols"] = model.prompt_encoder[adapter_name].prefix_task_cols
to_return["prefix_task_rows"] = model.prompt_encoder[adapter_name].prefix_task_rows
prompt_embeddings = model.prompt_encoder[adapter_name].embedding.weight
else:
if config.inference_mode:
prompt_embeddings = model.prompt_encoder[adapter_name].embedding.weight
else:
prompt_embeddings = model.get_prompt_embedding_to_save(adapter_name)
to_return["prompt_embeddings"] = prompt_embeddings
elif config.peft_type == PeftType.SHIRA:
shira_prefix = PEFT_TYPE_TO_PREFIX_MAPPING[config.peft_type]
to_return = {k: state_dict[k] for k in state_dict if shira_prefix in k}
if platform.system() == "Windows":
warnings.warn(
"Windows has issues saving integers into safetensors. Hence, we convert shira_indices to float32 "
"before saving on Windows OS. The shira_indices will always be converted to integers when loading."
)
for name, module in model.named_modules():
if hasattr(module, "shira_indices"):
for k, v in module.shira_indices.items():
# Windows has some issues with saving integers into safetensors. Tests fail with some kind of
# PermissionError. This results in failed tests, so we are converting indices to float32 before
# saving and then converting them back to int when loading. This is happening only for Windows,
# not for Linux and Mac-OS.
to_return[f"{name}.shira_indices.{k}"] = (
v.to(torch.float32) if platform.system() == "Windows" else v
)
elif config.peft_type == PeftType.VERA:
vera_prefix = PEFT_TYPE_TO_PREFIX_MAPPING[config.peft_type]
to_return = {k: state_dict[k] for k in state_dict if vera_prefix in k}
if config.save_projection:
# TODO: adding vera_A and vera_B to `self.get_base_layer` would
# make name to match here difficult to predict.
if f"base_model.vera_A.{adapter_name}" not in state_dict:
raise ValueError(
"Model was initialised to not save vera_A and vera_B but config now specifies to save projection!"
" Set `config.save_projection` to `False`."
)
to_return["base_model.vera_A." + adapter_name] = state_dict["base_model.vera_A." + adapter_name]
to_return["base_model.vera_B." + adapter_name] = state_dict["base_model.vera_B." + adapter_name]
elif config.peft_type == PeftType.XLORA:
to_return = {k: state_dict[k] for k in state_dict if "internal_xlora_classifier" in k}
elif config.peft_type == PeftType.VBLORA:
to_return = {}
# choose the most efficient dtype for indices
if config.num_vectors < 2**8:
indices_dtype = torch.uint8
elif config.num_vectors < 2**15:
indices_dtype = torch.int16
elif config.num_vectors < 2**31:
indices_dtype = torch.int32
else:
indices_dtype = torch.int64
if config.save_only_topk_weights:
# in save_only_topk_weights mode, we save topk_indices and topk_weights for parameter efficiency
for k in state_dict:
if "vblora_logits" in k:
logits, indices = state_dict[k].topk(config.topk)
to_return.update({k + "_topk_indices": indices.to(dtype=indices_dtype)})
to_return.update({k + "_topk_weights": torch.softmax(logits, dim=-1)[:, :, :-1].contiguous()})
else:
to_return = {k: state_dict[k] for k in state_dict if "vblora_logits" in k}
to_return["base_model.vblora_vector_bank." + adapter_name] = state_dict[
"base_model.vblora_vector_bank." + adapter_name
]
elif config.peft_type in list(PeftType):
prefix = PEFT_TYPE_TO_PREFIX_MAPPING[config.peft_type]
to_return = {k: state_dict[k] for k in state_dict if prefix in k}
else:
raise ValueError(f"Unknown PEFT type passed: {config.peft_type}")
# ADDITIONAL TRAINING MODULES / MODULES_TO_SAVE
for name, module in model.named_modules():
if isinstance(module, AuxiliaryTrainingWrapper):
if name.startswith("_fsdp_wrapped_module."):
# If FSDP is used, the state_dict is from the unwrapped model, which will result in a key mismatch if we
# don't remove the FSDP-specific prefix
name = name.removeprefix("_fsdp_wrapped_module.")
# Compute the module-relative state dict to make it easier for the adapter to fetch the appropriate
# keys that the module thinks need to be saved. We cannot rely on `.state_dict()` internally of the
# module since accelerators like DeepSpeed require special handling which is done for the model
# state dict from above but most likely not in the module itself. See #2450.
module_state_dict = {
k.removeprefix(f"{name}."): v for k, v in state_dict.items() if k.startswith(f"{name}.")
}
to_return.update(
{f"{name}.{k}": v for k, v in module.adapter_state_dict(adapter_name, module_state_dict).items()}
)
# DEAL WITH EMBEDDINGS
#
# save_embedding_layer="auto" needs to check the following logic:
#
# - when vocab size was NOT changed, embeddings should be saved only when targeted
# but not when
# - using PeftType.TRAINABLE_TOKENS
# - LoRA using trainable_token_indices (since their goal is to space-efficient)
# but
# - when vocab size was changed, embeddings should be saved automatically regardless to cover this
# scenario: 1) fine-tune embedding, 2) resize embedding, 3) train with trainable tokens
#
embedding_is_targeted = False
if hasattr(config, "target_modules"):
if isinstance(config.target_modules, str) and (config.target_modules != INCLUDE_LINEAR_LAYERS_SHORTHAND):
# `model` could be a PeftModel or something else like transformers/diffusers/..., in which case unwrapping is
# not needed.
_model = model.get_base_model() if hasattr(model, "get_base_model") else model
embedding_is_targeted = any(
match_target_against_key(config.target_modules, k)
for k, _ in _model.named_modules()
if any(re.match(rf"(.*\.)?{e}$", k) for e in EMBEDDING_LAYER_NAMES)
)
elif config.target_modules:
embedding_is_targeted = any(k in config.target_modules for k in EMBEDDING_LAYER_NAMES)
using_trainable_tokens = (
config.peft_type == PeftType.TRAINABLE_TOKENS or getattr(config, "trainable_token_indices", None) is not None
)
if save_embedding_layers == "auto" and embedding_is_targeted and not using_trainable_tokens:
warnings.warn("Setting `save_embedding_layers` to `True` as embedding layers found in `target_modules`.")
save_embedding_layers = True
elif save_embedding_layers == "auto":
vocab_size = getattr(getattr(model, "config", None), "vocab_size", None)
model_id = getattr(config, "base_model_name_or_path", None)
# For some models e.g. diffusers the text config file is stored in a subfolder
# we need to make sure we can download that config.
has_base_config = False
# ensure that this check is not performed in HF offline mode, see #1452
if model_id is not None:
local_config_exists = os.path.exists(os.path.join(model_id, "config.json"))
exists = local_config_exists or check_file_exists_on_hf_hub(model_id, "config.json")
if exists is None:
# check failed, could not determine if it exists or not
warnings.warn(
f"Could not find a config file in {model_id} - will assume that the vocabulary was not modified."
)
has_base_config = False
else:
has_base_config = exists
# check if the vocab size of the base model is different from the vocab size of the finetuned model
if (
vocab_size
and model_id
and has_base_config
and (vocab_size != model.config.__class__.from_pretrained(model_id).vocab_size)
):
warnings.warn(
"Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning."
)
save_embedding_layers = True
else:
save_embedding_layers = False
if save_embedding_layers and hasattr(model, "get_input_embeddings"):
for layer in [model.get_input_embeddings(), model.get_output_embeddings()]:
# Either the layer is not targeted, then it must have been resized and needs saving. Or it is targeted and
# therefore has a valid base layer, then we'll save it as well.
if not embedding_is_targeted or has_valid_embedding_base_layer(layer):
embedding_module_name = get_embedding_layer_name(model, layer, embedding_is_targeted)
if embedding_module_name:
to_return.update({k: v for k, v in state_dict.items() if embedding_module_name in k})
elif save_embedding_layers:
warnings.warn("Could not identify embedding layer(s) because the model is not a 🤗 transformers model.")
# REMOVE ADAPTER NAME
# Ensure not to replace in the middle of the key because a module happens to have the same name as the adapter.
pattern = re.compile(re.escape(f".{adapter_name}") + r"$")
def remove_adapter_name(key):
if "." not in key:
# nothing to do
return key
if key.endswith(f".{adapter_name}"):
# comes from an nn.Parameter, so no .weight suffix, the adapter name is directly at the end
return key.removesuffix(f".{adapter_name}")
# comes from an nn.Module, i.e. the adapter name is the 2nd to last element, e.g. v_proj.lora_A.default.weight
key, _, suffix = key.rpartition(".") # split, e.g. v_proj.lora_A.default + weight
if (config.peft_type == PeftType.VBLORA) and suffix.startswith(f"{adapter_name}_"):
# special case: VBLoRA creates keys that require this replacement:
# base_model.model.lin0.vblora_logits_A.default_topk_indices =>
# base_model.model.lin0.vblora_logits_A_topk_indices
return key + "_" + suffix.removeprefix(f"{adapter_name}_")
key = pattern.sub("", key) # remove adapter name, e.g. v_proj.lora_A
return f"{key}.{suffix}" # stitch the suffix back, e.g, v_proj.lora_A.weight
to_return = {remove_adapter_name(k): v for k, v in to_return.items()}
return to_return
def _find_mismatched_keys(
model: torch.nn.Module, peft_model_state_dict: dict[str, torch.Tensor], ignore_mismatched_sizes: bool = False
) -> tuple[dict[str, torch.Tensor], list[tuple[str, tuple[int, ...], tuple[int, ...]]]]:
if not ignore_mismatched_sizes:
return peft_model_state_dict, []
mismatched = []
state_dict = model.state_dict()
for key, tensor in peft_model_state_dict.items():
if key not in state_dict:
continue
# see https://github.com/huggingface/transformers/blob/09f9f566de83eef1f13ee83b5a1bbeebde5c80c1/src/transformers/modeling_utils.py#L3858-L3864
if (state_dict[key].shape[-1] == 1) and (state_dict[key].numel() * 2 == tensor.numel()):
# This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size
# differences. Without matching with module type or parameter type it seems like a practical way to detect
# valid 4bit weights.
continue
if state_dict[key].shape != tensor.shape:
mismatched.append((key, tensor.shape, state_dict[key].shape))
for key, _, _ in mismatched:
del peft_model_state_dict[key]
return peft_model_state_dict, mismatched
def _insert_adapter_name_into_state_dict(
state_dict: dict[str, torch.Tensor], adapter_name: str, parameter_prefix: str
) -> dict[str, torch.Tensor]:
"""Utility function to remap the state_dict keys to fit the PEFT model by inserting the adapter name."""
peft_model_state_dict = {}
for key, val in state_dict.items():
if parameter_prefix in key:
_, _, suffix = key.rpartition(parameter_prefix)
if "." in suffix:
suffix_to_replace = ".".join(suffix.split(".")[1:])
# only replace the substring if the key ends on the substring to avoid accidental replacement inside of
# the key if a module happens to have a name that contains the substring
key = re.sub(re.escape(suffix_to_replace) + r"$", f"{adapter_name}.{suffix_to_replace}", key)
else:
key = f"{key}.{adapter_name}"
peft_model_state_dict[key] = val
else:
peft_model_state_dict[key] = val
return peft_model_state_dict
def set_peft_model_state_dict(
model,
peft_model_state_dict,
adapter_name="default",
ignore_mismatched_sizes: bool = False,
low_cpu_mem_usage: bool = False,
) -> None:
"""
Set the state dict of the PEFT model.
Given a PEFT `state_dict` (as returned by [`get_peft_model_state_dict`]), insert the weights into the model. The
model needs to have the PEFT adapters already in place (e.g. via [`inject_adapter_in_model`]).
Setting the adapter weights also takes care of re-inserting the adapter name. This name may be a different name
than the one originally used to train the adapter.
Args:
model ([`PeftModel`]):
The Peft model.
peft_model_state_dict (`dict`):
The state dict of the Peft model.
adapter_name (`str`, *optional*, defaults to `"default"`):
The name of the adapter whose state dict should be set.
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
Whether to ignore mismatched in the state dict.
low_cpu_mem_usage (`bool`, `optional`, defaults to `False`):
This argument must be `True` if the `model` was loaded with adapter weights on the meta device, e.g. after
calling `inject_adapter_in_model` with `low_cpu_mem_usage=True`. Otherwise, leave it as `False`.
"""
config = model.peft_config[adapter_name]
state_dict = peft_model_state_dict
# handle auxiliary training wrappers such as ModulesToSaveWrapper and TrainableTokensWrapper by getting each of
# them and translating saved state dict key (which does not include the adapter name) to loaded state dict key
# (which includes the adapter name).
for name, module in model.named_modules():
if isinstance(module, AuxiliaryTrainingWrapper):
# Not every module has a 1:1 mapping. ModulesToSaveWrapper, for example, removes the
# `modules_to_save.{adapter_name}.` prefix. This prefix must be restored when loading the model from the
# saved state dict which is why we fetch a load key map from the wrapper.
key_map = module.adapter_state_dict_load_map(adapter_name)
if name.startswith("_fsdp_wrapped_module."):
# If FSDP is used, the state_dict is from the unwrapped model, which will result in a key mismatch if we
# don't remove the FSDP-specific prefix
name = name.removeprefix("_fsdp_wrapped_module.")
for k in key_map:
lookup_key = f"{name}.{k}"
store_key = f"{name}.{key_map[k]}"
state_dict[store_key] = peft_model_state_dict[lookup_key]
# delete the old key from the previous `state_dict = peft_model_state_dict` statement.
del state_dict[lookup_key]
if config.is_prompt_learning or config.peft_type == PeftType.ADAPTION_PROMPT:
peft_model_state_dict = state_dict
elif config.peft_type == PeftType.XLORA:
peft_model_state_dict = state_dict
elif config.peft_type in PEFT_TYPE_TO_PREFIX_MAPPING:
peft_model_state_dict = {}
parameter_prefix = PEFT_TYPE_TO_PREFIX_MAPPING[config.peft_type]
if config.peft_type == PeftType.VBLORA and config.save_only_topk_weights:
num_vectors, _ = model.vblora_vector_bank[adapter_name].shape
state_dict_keys = list(state_dict.keys())
for k in state_dict_keys:
# in save_only_topk_weights mode, only topk_indices and topk_weights are saved
# note that topk_indices and topk_weights serve as an efficient representation of the logits
# so we need to recover the logits from the topk_indices and topk_weights
if "_topk_indices" in k:
v = state_dict[k].to(torch.long)
original_key = k.replace("_topk_indices", "")
# find the corresponding topk_weights from the state_dict
topk_weights = state_dict[k.replace("_topk_indices", "_topk_weights")]
# as we only save the first k-1 topk_weights, here we recover the last one
topk_weights = torch.cat([topk_weights, 1 - topk_weights.sum(-1, keepdim=True)], dim=-1)
# convert the weights to logits
topk_logits = torch.log(topk_weights)
matrix = (
torch.zeros([*(topk_logits.shape[:-1]), num_vectors])
.fill_(float("-inf"))
.to(topk_logits.device)
.scatter(-1, v, topk_logits)
)
# add logits to the state_dict
state_dict[original_key] = matrix
# delete the topk_indices and topk_weights from the state_dict
del state_dict[k]
del state_dict[k.replace("_topk_indices", "_topk_weights")]
peft_model_state_dict = _insert_adapter_name_into_state_dict(
state_dict, adapter_name=adapter_name, parameter_prefix=parameter_prefix
)
if config.peft_type == PeftType.ADALORA:
rank_pattern = config.rank_pattern
if rank_pattern is not None:
model.resize_modules_by_rank_pattern(rank_pattern, adapter_name)
elif config.peft_type == PeftType.SHIRA:
if platform.system() == "Windows":
warnings.warn(
"Windows has issues saving integers into safetensors. Hence, we had converted shira_indices "
"to float32 before saving on Windows OS. The shira_indices will always be converted to integers "
"when loading."
)
for name, module in model.named_modules():
if hasattr(module, "shira_indices"):
# for k, v in module.shira_indices.items():
if f"{name}.shira_indices.{adapter_name}" in peft_model_state_dict:
shira_indices_values = peft_model_state_dict.pop(f"{name}.shira_indices.{adapter_name}")
# Convert shira_indices to int in case they were saved on a Windows OS and are being loaded
# on a Linux or a Mac-OS system. If they were saved in Linux or Mac-OS, they are already
# integers and the following will not affect anything.
module.shira_indices[adapter_name] = shira_indices_values.to(torch.int)
elif config.peft_type == PeftType.VERA:
if config.save_projection and "base_model.vera_A" not in peft_model_state_dict:
raise ValueError(
"Specified to load vera_A and vera_B from state dictionary however they were not present!"
)
elif not config.save_projection and "base_model.vera_A" in peft_model_state_dict:
warnings.warn(
"Specified to not load vera_A and vera_B from state dictionary however they are present in state"
" dictionary! Consider using them to ensure checkpoint loading is correct on all platforms using"
" `peft_config.save_projection = True`"
)
elif not config.save_projection: # and no vera_A in state dictionary
warnings.warn(
"Specified to not load vera_A and vera_B from state dictionary. This means we will be relying on"
" PRNG initialisation to restore these projections using `config.projection_prng_key`, which may"
" not be accurate on all system configurations."
)
elif config.peft_type == PeftType.LORA:
# Here we take care of a refactor of DoRA which changed lora_magnitude_vector from a ParameterDict to a
# ModuleDict with a DoraLayer instance. The old parameter is now the "weight" attribute of that layer.
old_dora_suffix = f"lora_magnitude_vector.{adapter_name}"
def renamed_dora_weights(k):
if k.endswith(old_dora_suffix):
k = k + ".weight"
return k
peft_model_state_dict = {renamed_dora_weights(k): v for k, v in peft_model_state_dict.items()}
elif config.peft_type == PeftType.OFT:
if any(".oft_r." in key for key in peft_model_state_dict):
raise ValueError(
"Trying to load old OFT checkpoint, which is no longer supported. Please install PEFT <= v0.15.2 to load it or train a new OFT adapter."
)
else:
raise NotImplementedError
peft_model_state_dict, mismatched_keys = _find_mismatched_keys(
model, peft_model_state_dict, ignore_mismatched_sizes=ignore_mismatched_sizes
)
if low_cpu_mem_usage:
load_result = model.load_state_dict(peft_model_state_dict, strict=False, assign=True)
# ensure that the correct device is set
for module in model.modules():
if hasattr(module, "_move_adapter_to_device_of_base_layer"):
module._move_adapter_to_device_of_base_layer(adapter_name)
else:
load_result = model.load_state_dict(peft_model_state_dict, strict=False)
if config.is_prompt_learning:
model.prompt_encoder[adapter_name].embedding.load_state_dict(
{"weight": peft_model_state_dict["prompt_embeddings"]}, strict=True
)
if config.peft_type == PeftType.MULTITASK_PROMPT_TUNING:
model.prompt_encoder[adapter_name].load_state_dict(peft_model_state_dict, strict=False)
if mismatched_keys:
# see https://github.com/huggingface/transformers/blob/09f9f566de83eef1f13ee83b5a1bbeebde5c80c1/src/transformers/modeling_utils.py#L4039
mismatched_warning = "\n".join(
[
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
for key, shape1, shape2 in mismatched_keys
]
)
msg = (
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint "
f"and are being ignored because you passed `ignore_mismatched_sizes=True`: {mismatched_warning}."
)
warnings.warn(msg)
return load_result
# TODO: remove this function, use vanilla torch.load as soon as torch < 2.6.0 is no longer supported
def torch_load(*args, weights_only=True, **kwargs):
"""Call torch.load and handle weights_only.
Defaults to weights_only=True to anticipate upcoming switch on the PyTorch side.
"""
return torch.load(*args, weights_only=weights_only, **kwargs)
def load_peft_weights(
model_id: str, device: Optional[str] = None, key_mapping: Optional[dict[str, str]] = None, **hf_hub_download_kwargs
) -> dict:
r"""
A helper method to load the PEFT weights from the HuggingFace Hub or locally
Args:
model_id (`str`):
The local path to the adapter weights or the name of the adapter to load from the HuggingFace Hub.
device (`str`):
The device to load the weights onto.
key_mapping (dict, *optional*, defaults to None)
Extra mapping of PEFT `state_dict` keys applied before loading the `state_dict`. When this mapping is
applied, the PEFT-specific `"base_model.model"` prefix is removed beforehand and the adapter name (e.g.
`"default"`) is not inserted yet. Only pass this argument if you know what you're doing.
hf_hub_download_kwargs (`dict`):
Additional arguments to pass to the `hf_hub_download` method when loading from the HuggingFace Hub.
"""
path = (
os.path.join(model_id, hf_hub_download_kwargs["subfolder"])
if hf_hub_download_kwargs.get("subfolder", None) is not None
else model_id
)
if device is None:
device = infer_device()
def get_hub_filename(use_safetensors=True):
weights_name = SAFETENSORS_WEIGHTS_NAME if use_safetensors else WEIGHTS_NAME
return (
os.path.join(hf_hub_download_kwargs["subfolder"], weights_name)
if hf_hub_download_kwargs.get("subfolder", None) is not None
else weights_name
)
if "user_agent" not in hf_hub_download_kwargs:
hf_hub_download_kwargs["user_agent"] = http_user_agent()
if os.path.exists(os.path.join(path, SAFETENSORS_WEIGHTS_NAME)):
filename = os.path.join(path, SAFETENSORS_WEIGHTS_NAME)
use_safetensors = True
elif os.path.exists(os.path.join(path, WEIGHTS_NAME)):
filename = os.path.join(path, WEIGHTS_NAME)
use_safetensors = False
elif huggingface_hub.constants.HF_HUB_OFFLINE:
# if in offline mode, check if we can find the adapter file locally
hub_filename = get_hub_filename(use_safetensors=True)
hf_hub_download_kwargs.pop("local_files_only", None)
try:
filename = hf_hub_download(model_id, hub_filename, local_files_only=True, **hf_hub_download_kwargs)
use_safetensors = True
except LocalEntryNotFoundError:
# Could not find safetensors, try pickle. If this also fails, it's fine to let the error be raised here, as
# it means that the user tried to load a non-cached model in offline mode.
hub_filename = get_hub_filename(use_safetensors=False)
filename = hf_hub_download(model_id, hub_filename, local_files_only=True, **hf_hub_download_kwargs)
use_safetensors = False
else:
token = hf_hub_download_kwargs.get("token", None)
if token is None:
token = hf_hub_download_kwargs.get("use_auth_token", None)
hub_filename = get_hub_filename(use_safetensors=True)
has_remote_safetensors_file = file_exists(
repo_id=model_id,
filename=hub_filename,
revision=hf_hub_download_kwargs.get("revision", None),
repo_type=hf_hub_download_kwargs.get("repo_type", None),
token=token,
)
use_safetensors = has_remote_safetensors_file
if has_remote_safetensors_file:
# Priority 1: load safetensors weights
filename = hf_hub_download(
model_id,
SAFETENSORS_WEIGHTS_NAME,
**hf_hub_download_kwargs,
)
else:
try:
filename = hf_hub_download(model_id, WEIGHTS_NAME, **hf_hub_download_kwargs)
except EntryNotFoundError:
raise ValueError(
f"Can't find weights for {model_id} in {model_id} or in the Hugging Face Hub. "
f"Please check that the file {WEIGHTS_NAME} or {SAFETENSORS_WEIGHTS_NAME} is present at {model_id}."
)
if use_safetensors:
if hasattr(torch.backends, "mps") and (device == torch.device("mps")):
adapters_weights = safe_load_file(filename, device="cpu")
else:
adapters_weights = safe_load_file(filename, device=device)
else:
adapters_weights = torch_load(filename, map_location=torch.device(device))
if not key_mapping:
remapped_adapters_weights = adapters_weights
else:
# See discussion in https://github.com/huggingface/transformers/pull/38627
# Remap adapter weight names according to the provided key_mapping.
remapped_adapters_weights = {}
for key, val in adapters_weights.items():
if key.startswith("base_model.model."):
prefix = "base_model.model."
elif key.startswith("base_model."):
prefix = "base_model."
else:
raise ValueError(
"An error occurred while trying to load a PEFT state_dict with key_mapping. This should not "
"happen. Please open an issue on https://github.com/huggingface/peft/issues and report the error."
)
key = key.removeprefix(prefix) # the key map assumes that there is no prefix
for pattern, replacement in key_mapping.items():
key_new, n_replace = re.subn(pattern, replacement, key)
# Early exit of the loop
if n_replace > 0:
key = key_new
break
key_with_prefix = f"{prefix}{key}"
remapped_adapters_weights[key_with_prefix] = val
return remapped_adapters_weights