Ramzes / src /peft /utils /constants.py
Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import packaging.version
import torch
import transformers
from transformers import BloomPreTrainedModel
# needed for prefix-tuning of bloom model
def bloom_model_postprocess_past_key_value(past_key_values):
past_key_values = torch.cat(past_key_values)
total_layers, batch_size, num_attention_heads, num_virtual_tokens, head_dim = past_key_values.shape
keys = past_key_values[: total_layers // 2]
keys = keys.transpose(2, 3).reshape(
total_layers // 2, batch_size * num_attention_heads, head_dim, num_virtual_tokens
)
values = past_key_values[total_layers // 2 :]
values = values.reshape(total_layers // 2, batch_size * num_attention_heads, num_virtual_tokens, head_dim)
return tuple(zip(keys, values))
# needed for prefix-tuning of StarCoder models
def starcoder_model_postprocess_past_key_value(past_key_values):
result = []
for k in past_key_values:
k = k[:, :, 0]
k = k.permute([1, 2, 0, 3])
k = k.reshape(*k.shape[:-2], -1)
result.append(k)
return tuple(result)
# TODO: remove this once transformers 4.53 is no longer supported
TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING = {}
transformers_le_4_53 = packaging.version.parse(transformers.__version__) < packaging.version.parse("4.54.0.dev0")
if transformers_le_4_53:
TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING["gpt_bigcode"] = (
starcoder_model_postprocess_past_key_value
)
if hasattr(BloomPreTrainedModel, "_convert_to_standard_cache"):
# special handling for bloom architecture was fixed in:
# https://github.com/huggingface/transformers/pull/31445
# the _convert_to_standard_cache method is removed in the PR and thus serves as an indicator
TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING["bloom"] = bloom_model_postprocess_past_key_value
#######################################
# DEFAULT MAPPINGS FOR TARGET_MODULES #
#######################################
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING = {
"t5": ["q", "v"],
"mt5": ["q", "v"],
"bart": ["q_proj", "v_proj"],
"gpt2": ["c_attn"],
"bloom": ["query_key_value"],
"blip-2": ["q", "v", "q_proj", "v_proj"],
"opt": ["q_proj", "v_proj"],
"gptj": ["q_proj", "v_proj"],
"gpt_neox": ["query_key_value"],
"gpt_neo": ["q_proj", "v_proj"],
"bert": ["query", "value"],
"roberta": ["query", "value"],
"xlm-roberta": ["query", "value"],
"electra": ["query", "value"],
"deberta-v2": ["query_proj", "value_proj"],
"deberta": ["in_proj"],
"layoutlm": ["query", "value"],
"llama": ["q_proj", "v_proj"],
"llama4": ["q_proj", "v_proj"],
"chatglm": ["query_key_value"],
"gpt_bigcode": ["c_attn"],
"mpt": ["Wqkv"],
"RefinedWebModel": ["query_key_value"],
"RefinedWeb": ["query_key_value"],
"falcon": ["query_key_value"],
"btlm": ["c_proj", "c_attn"],
"codegen": ["qkv_proj"],
"mistral": ["q_proj", "v_proj"],
"mixtral": ["q_proj", "v_proj"],
"stablelm": ["q_proj", "v_proj"],
"phi": ["q_proj", "v_proj", "fc1", "fc2"],
"gemma": ["q_proj", "v_proj"],
"gemma2": ["q_proj", "v_proj"],
"gemma3_text": ["q_proj", "v_proj"],
"qwen2": ["q_proj", "v_proj"],
"qwen3": ["q_proj", "v_proj"],
}
# target module mappings that are identical to LORA
TRANSFORMERS_MODELS_TO_BOFT_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_BONE_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_C3A_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_HRA_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_LOHA_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_LOKR_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_MISS_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_OFT_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_POLY_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_RANDLORA_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_ROAD_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
# mappings that are similar to LORA with small changes
TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING["gpt_bigcode"] = ["mlp.c_proj"]
TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING["gpt2"] = ["mlp.c_proj"]
TRANSFORMERS_MODELS_TO_SHIRA_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_SHIRA_TARGET_MODULES_MAPPING["phi"] = ["q_proj", "v_proj"]
TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING["phi"] = ["q_proj", "v_proj"]
TRANSFORMERS_MODELS_TO_C3A_TARGET_MODULES_MAPPING = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
TRANSFORMERS_MODELS_TO_C3A_TARGET_MODULES_MAPPING["gpt_bigcode"] = ["mlp.c_proj"]
TRANSFORMERS_MODELS_TO_C3A_TARGET_MODULES_MAPPING["gpt2"] = ["mlp.c_proj"]
# target module mappings that differ from LORA
TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING = {
"llama": ["input_layernorm", "post_attention_layernorm", "norm"],
"bloom": ["input_layernorm", "post_attention_layernorm", "ln_f"],
"llava": [
"multi_modal_projector",
"input_layernorm",
"post_attention_layernorm",
"norm",
"embed_tokens",
"lm_head",
],
"t5": ["layer_norm", "final_layer_norm"],
"mt5": ["layer_norm", "final_layer_norm"],
"bart": ["self_attn_layer_norm", "encoder_attn_layer_norm", "final_layer_norm"],
"gpt2": ["ln_1", "ln_2", "ln_f"],
"blip-2": ["layernorm", "LayerNorm", "final_layer_norm", "self_attn_layer_norm"],
"gptj": ["ln_1", "ln_f"],
"falcon": ["input_layernorm", "post_attention_layernorm", "ln_f"],
"mistral": ["input_layernorm", "post_attention_layernorm", "norm"],
"phi": ["input_layernorm", "final_layernorm"],
"gemma": ["input_layernorm", "post_attention_layernorm", "norm"],
"gemma2": [
"input_layernorm",
"post_attention_layernorm",
"pre_feedforward_layernorm",
"post_feedforward_layernorm",
"norm",
],
"gemma3_text": [
"input_layernorm",
"post_attention_layernorm",
"pre_feedforward_layernorm",
"post_feedforward_layernorm",
"norm",
],
"qwen2": ["post_attention_layernorm"],
"qwen3": ["post_attention_layernorm"],
}
TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING = {
"t5": ["k", "v", "wo"],
"mt5": ["k", "v", "wi_1"],
"gpt2": ["c_attn", "mlp.c_proj"],
"bloom": ["query_key_value", "mlp.dense_4h_to_h"],
"roberta": ["key", "value", "output.dense"],
"opt": ["q_proj", "k_proj", "fc2"],
"gptj": ["q_proj", "v_proj", "fc_out"],
"gpt_neox": ["query_key_value", "dense_4h_to_h"],
"gpt_neo": ["q_proj", "v_proj", "c_proj"],
"bart": ["q_proj", "v_proj", "fc2"],
"gpt_bigcode": ["c_attn", "mlp.c_proj"],
"llama": ["k_proj", "v_proj", "down_proj"],
"llama4": ["q_proj", "v_proj", "down_proj"],
"mistral": ["k_proj", "v_proj", "down_proj"],
"mixtral": ["k_proj", "v_proj", "w2"],
"bert": ["key", "value", "output.dense"],
"deberta-v2": ["key_proj", "value_proj", "output.dense"],
"deberta": ["in_proj", "output.dense"],
"RefinedWebModel": ["query_key_value", "dense_4h_to_h"],
"RefinedWeb": ["query_key_value", "dense_4h_to_h"],
"falcon": ["query_key_value", "dense_4h_to_h"],
"phi": ["q_proj", "v_proj", "fc2"],
"gemma": ["q_proj", "v_proj", "down_proj"],
"gemma2": ["q_proj", "v_proj", "down_proj"],
"gemma3_text": ["q_proj", "v_proj", "down_proj"],
"qwen2": ["q_proj", "v_proj", "down_proj"],
"qwen3": ["q_proj", "v_proj", "down_proj"],
}
TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING = {
"t5": ["wo"],
"mt5": [],
"gpt2": ["mlp.c_proj"],
"bloom": ["mlp.dense_4h_to_h"],
"roberta": ["output.dense"],
"opt": ["fc2"],
"gptj": ["fc_out"],
"gpt_neox": ["dense_4h_to_h"],
"gpt_neo": ["c_proj"],
"bart": ["fc2"],
"gpt_bigcode": ["mlp.c_proj"],
"llama": ["down_proj"],
"llama4": ["down_proj"],
"mistral": ["down_proj"],
"mixtral": ["w2"],
"bert": ["output.dense"],
"deberta-v2": ["output.dense"],
"deberta": ["output.dense"],
"RefinedWeb": ["dense_4h_to_h"],
"RefinedWebModel": ["dense_4h_to_h"],
"falcon": ["dense_4h_to_h"],
"phi": ["fc2"],
"gemma": ["down_proj"],
"gemma2": ["down_proj"],
"gemma3_text": ["down_proj"],
"qwen2": ["down_proj"],
"qwen3": ["down_proj"],
}
TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING = {
"t5": ["q", "k", "v", "o", "wi", "wo"],
"mt5": ["q", "k", "v", "o", "wi_0", "wi_1", "wo"],
"bart": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"],
"gpt2": ["c_attn"],
"bloom": ["query_key_value"],
"opt": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"],
"gptj": ["q_proj", "v_proj"],
"gpt_neox": ["query_key_value"],
"gpt_neo": ["q_proj", "v_proj"],
"llama": ["q_proj", "v_proj"],
"llama4": ["q_proj", "v_proj"],
"bert": ["query", "value"],
"roberta": ["query", "key", "value", "dense"],
# "xlm-roberta": ["query", "value"],
# "electra": ["query", "value"],
"deberta-v2": ["query_proj", "key_proj", "value_proj", "dense"],
"gpt_bigcode": ["c_attn"],
"deberta": ["in_proj"],
# "layoutlm": ["query", "value"],
"gemma": ["q_proj", "v_proj"],
"gemma2": ["q_proj", "v_proj"],
"gemma3_text": ["q_proj", "v_proj"],
"qwen2": ["q_proj", "v_proj"],
"qwen3": ["q_proj", "v_proj"],
}
TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING = {
"t5": ["q", "k", "v", "o", "wi", "wo"],
"mt5": ["q", "k", "v", "o", "wi_0", "wi_1", "wo"],
"bart": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"],
"gpt2": ["c_attn"],
"bloom": ["query_key_value"],
"opt": ["q_proj", "k_proj", "v_proj", "out_proj", "fc1", "fc2"],
"gptj": ["q_proj", "v_proj"],
"gpt_neox": ["query_key_value"],
"gpt_neo": ["q_proj", "v_proj"],
"llama": ["q_proj", "v_proj"],
"llama4": ["q_proj", "v_proj"],
"bert": ["query", "value"],
"roberta": ["query", "value"],
"deberta-v2": ["query_proj", "key_proj", "value_proj", "dense"],
"gpt_bigcode": ["c_attn"],
"deberta": ["in_proj"],
"gemma": ["q_proj", "v_proj"],
"gemma2": ["q_proj", "v_proj"],
"gemma3_text": ["q_proj", "v_proj"],
"qwen2": ["q_proj", "v_proj"],
"qwen3": ["q_proj", "v_proj"],
}
##################
# MISC CONSTANTS #
##################
TRANSFORMERS_MODELS_TO_WAVEFT_TARGET_MODULES_MAPPING = {
"t5": ["q", "v"],
"mt5": ["q", "v"],
"bart": ["q_proj", "v_proj"],
"gpt2": ["mlp.c_proj"],
"bloom": ["query_key_value"],
"blip-2": ["q", "v", "q_proj", "v_proj"],
"opt": ["q_proj", "v_proj"],
"gptj": ["q_proj", "v_proj"],
"gpt_neox": ["query_key_value"],
"gpt_neo": ["q_proj", "v_proj"],
"bert": ["query", "value"],
"roberta": ["query", "value"],
"xlm-roberta": ["query", "value"],
"electra": ["query", "value"],
"deberta-v2": ["query_proj", "value_proj"],
"deberta": ["in_proj"],
"layoutlm": ["query", "value"],
"llama": ["q_proj", "v_proj"],
"llama4": ["q_proj", "v_proj"],
"chatglm": ["query_key_value"],
"gpt_bigcode": ["mlp.c_proj"],
"mpt": ["Wqkv"],
"RefinedWebModel": ["query_key_value"],
"RefinedWeb": ["query_key_value"],
"falcon": ["query_key_value"],
"codegen": ["qkv_proj"],
"mistral": ["q_proj", "v_proj"],
"mixtral": ["q_proj", "v_proj"],
"stablelm": ["q_proj", "v_proj"],
"phi": ["q_proj", "v_proj", "fc1", "fc2"],
"gemma": ["q_proj", "v_proj"],
"gemma2": ["q_proj", "v_proj"],
"gemma3_text": ["q_proj", "v_proj"],
"qwen2": ["q_proj", "v_proj"],
"qwen3": ["q_proj", "v_proj"],
}
WEIGHTS_NAME = "adapter_model.bin"
SAFETENSORS_WEIGHTS_NAME = "adapter_model.safetensors"
CONFIG_NAME = "adapter_config.json"
EMBEDDING_LAYER_NAMES = ["embed_tokens", "lm_head"]
SEQ_CLS_HEAD_NAMES = ["score", "classifier"]
INCLUDE_LINEAR_LAYERS_SHORTHAND = "all-linear"
TOKENIZER_CONFIG_NAME = "tokenizer_config.json"
DUMMY_TARGET_MODULES = "dummy-target-modules"
DUMMY_MODEL_CONFIG = {"model_type": "custom"}
# If users specify more than this number of target modules, we apply an optimization to try to reduce the target modules
# to a minimal set of suffixes, which makes loading faster. We only apply this when exceeding a certain size since
# otherwise there is no point in optimizing and there is a small chance of bugs in the optimization algorithm, so no
# point in taking unnecessary risks. See #2045 for more context.
MIN_TARGET_MODULES_FOR_OPTIMIZATION = 20