Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import operator
from contextlib import contextmanager
from functools import partial
from torch import nn
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from peft.tuners.road.config import RoadConfig
from peft.tuners.tuners_utils import (
BaseTuner,
)
from peft.utils import TRANSFORMERS_MODELS_TO_ROAD_TARGET_MODULES_MAPPING
from .layer import RoadLayer, dispatch_default
def _adapter_names_pre_forward_hook(target, args, kwargs, adapter_names):
# pre-forward hook to inject the adapter_names argument when using mixed adapter batches inference
kwargs["adapter_names"] = adapter_names
return args, kwargs
class RoadModel(BaseTuner):
""" """
prefix: str = "road_"
tuner_layer_cls = RoadLayer
target_module_mapping = TRANSFORMERS_MODELS_TO_ROAD_TARGET_MODULES_MAPPING
def _create_and_replace(
self,
road_config: RoadConfig,
adapter_name: str,
target: nn.Module,
target_name: str,
parent: nn.Module,
current_key,
) -> None:
if current_key is None:
raise ValueError("Current Key shouldn't be `None`")
# Regexp matching - Find key which matches current target_name in patterns provided
variant = road_config.variant
group_size = road_config.group_size
kwargs = {
"variant": variant,
"group_size": group_size,
"init_weights": road_config.init_weights,
"loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False),
"loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False),
}
# for torchao merging, we need the get_apply_tensor_subclass from the quantization config
try:
kwargs["get_apply_tensor_subclass"] = operator.attrgetter(
"hf_quantizer.quantization_config.get_apply_tensor_subclass"
)(self.model)
except AttributeError:
pass
if isinstance(target, RoadLayer):
target.update_layer(
adapter_name,
variant,
group_size,
init_weights=road_config.init_weights,
)
else:
device_map = self.model.hf_device_map if hasattr(self.model, "hf_device_map") else None
new_module = self._create_new_module(road_config, adapter_name, target, device_map=device_map, **kwargs)
if adapter_name not in self.active_adapters:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
@staticmethod
def _create_new_module(road_config: RoadConfig, adapter_name, target, **kwargs):
dispatchers = []
# avoid eager bnb import
if is_bnb_available():
from .bnb import dispatch_bnb_8bit
dispatchers.append(dispatch_bnb_8bit)
if is_bnb_4bit_available():
from .bnb import dispatch_bnb_4bit
dispatchers.append(dispatch_bnb_4bit)
dispatchers.extend(
[
dispatch_default,
]
)
new_module = None
for dispatcher in dispatchers:
new_module = dispatcher(target, adapter_name, road_config=road_config, **kwargs)
if new_module is not None: # first match wins
break
if new_module is None:
# no module could be matched
raise ValueError(
f"Target module {target} is not supported. Currently, only the following modules are supported: "
"`torch.nn.Linear`."
)
return new_module
@contextmanager
def _enable_peft_forward_hooks(self, *args, **kwargs):
# If adapter_names is passed as an argument, we inject it into the forward arguments.
adapter_names = kwargs.pop("adapter_names", None)
if adapter_names is None:
# nothing to do
yield
return
if self.training:
raise ValueError("Cannot pass `adapter_names` when the model is in training mode.")
# Check that users only passed actually existing adapters.
# Note: We cannot do this on the layer level, as each individual layer may not have each adapter. Still, we want
# to check that there is at least one layer with the given name, or else something like typos can easily slip.
expected_adapters = set()
for layer in self.modules():
if isinstance(layer, RoadLayer):
expected_adapters |= layer.road_theta.keys()
unique_adapters = {name for name in adapter_names if name != "__base__"}
unexpected_adapters = unique_adapters - expected_adapters
if unexpected_adapters:
raise ValueError(f"Trying to infer with non-existing adapter(s): {', '.join(sorted(unexpected_adapters))}")
hook_handles = []
for module in self.modules():
if isinstance(module, RoadLayer):
pre_forward = partial(_adapter_names_pre_forward_hook, adapter_names=adapter_names)
handle = module.register_forward_pre_hook(pre_forward, with_kwargs=True)
hook_handles.append(handle)
# TODO LoRA also has hooks for beam search, ignore this for now
yield
for handle in hook_handles:
handle.remove()