|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import warnings |
|
|
from typing import Any, Optional |
|
|
|
|
|
import bitsandbytes as bnb |
|
|
import torch |
|
|
|
|
|
from peft.import_utils import is_bnb_4bit_available, is_bnb_available |
|
|
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
|
from peft.utils.integrations import dequantize_bnb_weight |
|
|
|
|
|
from .config import RoadVariant |
|
|
from .layer import RoadLayer, _apply_road, _get_delta_weight |
|
|
|
|
|
|
|
|
if is_bnb_available(): |
|
|
|
|
|
class Linear8bitLt(torch.nn.Module, RoadLayer): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
base_layer: torch.nn.Module, |
|
|
adapter_name: str, |
|
|
variant: RoadVariant = "road_1", |
|
|
group_size: int = 64, |
|
|
init_weights: bool = True, |
|
|
**kwargs, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
RoadLayer.__init__(self, base_layer) |
|
|
|
|
|
self._active_adapter = adapter_name |
|
|
self.update_layer( |
|
|
adapter_name, |
|
|
variant=variant, |
|
|
group_size=group_size, |
|
|
init_weights=init_weights, |
|
|
) |
|
|
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: |
|
|
""" |
|
|
Merge the active adapter weights into the base weights |
|
|
|
|
|
Args: |
|
|
safe_merge (`bool`, *optional*): |
|
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
|
NaNs. Defaults to `False`. |
|
|
adapter_names (`list[str]`, *optional*): |
|
|
The list of adapter names that should be merged. If None, all active adapters will be merged. |
|
|
Defaults to `None`. |
|
|
""" |
|
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
|
if not adapter_names: |
|
|
|
|
|
return |
|
|
|
|
|
for active_adapter in adapter_names: |
|
|
if active_adapter in self._available_adapters: |
|
|
warnings.warn( |
|
|
"Merge road module to 8-bit linear may get different generations due to rounding errors." |
|
|
) |
|
|
|
|
|
weight = self.get_base_layer().weight |
|
|
state = self.get_base_layer().state |
|
|
if state.SCB is None: |
|
|
state.SCB = weight.SCB |
|
|
|
|
|
|
|
|
|
|
|
output = dequantize_bnb_weight(weight, state=state) |
|
|
road_R = _get_delta_weight( |
|
|
self.variant[active_adapter], |
|
|
self.group_size[active_adapter], |
|
|
self.road_theta[active_adapter].data, |
|
|
self.road_alpha[active_adapter].data, |
|
|
) |
|
|
|
|
|
w_data = torch.matmul(road_R, output.to(road_R.dtype)) |
|
|
w_data = w_data.to(road_R.dtype).to(road_R.device).contiguous() |
|
|
|
|
|
if safe_merge and not torch.isfinite(w_data).all(): |
|
|
raise ValueError( |
|
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
|
) |
|
|
|
|
|
self.get_base_layer().weight = bnb.nn.Int8Params( |
|
|
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights |
|
|
).to(weight.device) |
|
|
|
|
|
if self.get_base_layer().bias is not None: |
|
|
bias = self.get_base_layer().bias |
|
|
orig_dtype = bias.dtype |
|
|
bias_data = bias.data |
|
|
new_bias = torch.matmul(road_R, bias_data.to(road_R.dtype)) |
|
|
bias.data = new_bias.to(orig_dtype) |
|
|
|
|
|
state.reset_grads() |
|
|
self.merged_adapters.append(active_adapter) |
|
|
|
|
|
def unmerge(self) -> None: |
|
|
""" |
|
|
This method unmerges all merged adapter layers from the base weights. |
|
|
""" |
|
|
if not self.merged: |
|
|
warnings.warn("Already unmerged. Nothing to do.") |
|
|
return |
|
|
|
|
|
while len(self.merged_adapters) > 0: |
|
|
active_adapter = self.merged_adapters.pop() |
|
|
if active_adapter in self._available_adapters: |
|
|
warnings.warn( |
|
|
"Unmerge road module to 8-bit linear may get different generations due to rounding errors." |
|
|
) |
|
|
|
|
|
weight = self.get_base_layer().weight |
|
|
state = self.get_base_layer().state |
|
|
if state.SCB is None: |
|
|
state.SCB = weight.SCB |
|
|
output = dequantize_bnb_weight(weight, state=state) |
|
|
|
|
|
road_R = _get_delta_weight( |
|
|
self.variant[active_adapter], |
|
|
self.group_size[active_adapter], |
|
|
self.road_theta[active_adapter].data, |
|
|
self.road_alpha[active_adapter].data, |
|
|
) |
|
|
inv_road_R = torch.linalg.inv(road_R.to(torch.float32)).to(road_R.dtype) |
|
|
|
|
|
w_data = torch.matmul(inv_road_R, output.to(road_R.dtype)) |
|
|
w_data = w_data.to(road_R.dtype).to(road_R.device).contiguous() |
|
|
|
|
|
self.get_base_layer().weight = bnb.nn.Int8Params( |
|
|
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights |
|
|
).to(weight.device) |
|
|
|
|
|
if self.get_base_layer().bias is not None: |
|
|
bias = self.get_base_layer().bias |
|
|
orig_dtype = bias.dtype |
|
|
bias_data = bias.data |
|
|
new_bias = torch.matmul(inv_road_R, bias_data) |
|
|
bias.data = new_bias.to(orig_dtype) |
|
|
|
|
|
state.reset_grads() |
|
|
|
|
|
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: |
|
|
if self.disable_adapters: |
|
|
if self.merged: |
|
|
self.unmerge() |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
elif self.merged: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
else: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
|
|
|
for active_adapter in self.active_adapters: |
|
|
if active_adapter not in self._available_adapters: |
|
|
continue |
|
|
|
|
|
requires_conversion = not torch.is_autocast_enabled() |
|
|
if requires_conversion: |
|
|
expected_dtype = result.dtype |
|
|
result = self._cast_input_dtype(result, self.road_theta[active_adapter].dtype) |
|
|
|
|
|
result = _apply_road( |
|
|
self.variant[active_adapter], |
|
|
self.group_size[active_adapter], |
|
|
self.road_theta[active_adapter], |
|
|
self.road_alpha[active_adapter], |
|
|
result, |
|
|
) |
|
|
|
|
|
if requires_conversion: |
|
|
x = x.to(expected_dtype) |
|
|
|
|
|
return result |
|
|
|
|
|
def __repr__(self) -> str: |
|
|
rep = super().__repr__() |
|
|
return "road." + rep |
|
|
|
|
|
def dispatch_bnb_8bit(target: torch.nn.Module, adapter_name: str, **kwargs): |
|
|
new_module = None |
|
|
|
|
|
if isinstance(target, BaseTunerLayer): |
|
|
target_base_layer = target.get_base_layer() |
|
|
else: |
|
|
target_base_layer = target |
|
|
|
|
|
loaded_in_8bit = kwargs.get("loaded_in_8bit", False) |
|
|
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt): |
|
|
eightbit_kwargs = kwargs.copy() |
|
|
eightbit_kwargs.update( |
|
|
{ |
|
|
"has_fp16_weights": target.state.has_fp16_weights, |
|
|
"threshold": target.state.threshold, |
|
|
"index": target.index, |
|
|
} |
|
|
) |
|
|
new_module = Linear8bitLt(target, adapter_name, **eightbit_kwargs) |
|
|
|
|
|
return new_module |
|
|
|
|
|
|
|
|
if is_bnb_4bit_available(): |
|
|
|
|
|
class Linear4bit(torch.nn.Module, RoadLayer): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
base_layer: torch.nn.Module, |
|
|
adapter_name: str, |
|
|
variant: RoadVariant = "road_1", |
|
|
group_size: int = 64, |
|
|
init_weights: bool = True, |
|
|
**kwargs, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
RoadLayer.__init__(self, base_layer) |
|
|
|
|
|
self._active_adapter = adapter_name |
|
|
self.update_layer( |
|
|
adapter_name, |
|
|
variant=variant, |
|
|
group_size=group_size, |
|
|
init_weights=init_weights, |
|
|
) |
|
|
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: |
|
|
""" |
|
|
Merge the active adapter weights into the base weights |
|
|
|
|
|
Args: |
|
|
safe_merge (`bool`, *optional*): |
|
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
|
NaNs. Defaults to `False`. |
|
|
adapter_names (`list[str]`, *optional*): |
|
|
The list of adapter names that should be merged. If None, all active adapters will be merged. |
|
|
Defaults to `None`. |
|
|
""" |
|
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
|
if not adapter_names: |
|
|
|
|
|
return |
|
|
|
|
|
for active_adapter in adapter_names: |
|
|
if active_adapter in self._available_adapters: |
|
|
warnings.warn( |
|
|
"Merge oft module to 4-bit linear may get different generations due to rounding errors." |
|
|
) |
|
|
|
|
|
weight = self.get_base_layer().weight |
|
|
kwargs = weight.__dict__ |
|
|
|
|
|
output = dequantize_bnb_weight(weight, state=weight.quant_state) |
|
|
|
|
|
road_R = _get_delta_weight( |
|
|
self.variant[active_adapter], |
|
|
self.group_size[active_adapter], |
|
|
self.road_theta[active_adapter].data, |
|
|
self.road_alpha[active_adapter].data, |
|
|
) |
|
|
w_data = torch.matmul(road_R, output.to(road_R.dtype)) |
|
|
w_data = w_data.to(road_R.dtype).to(road_R.device) |
|
|
|
|
|
if safe_merge and not torch.isfinite(w_data).all(): |
|
|
raise ValueError( |
|
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
|
) |
|
|
|
|
|
if "bnb_quantized" in kwargs: |
|
|
kwargs["bnb_quantized"] = False |
|
|
kwargs["requires_grad"] = False |
|
|
kwargs.pop("data", None) |
|
|
|
|
|
kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")} |
|
|
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), **kwargs).to(weight.device) |
|
|
|
|
|
if self.get_base_layer().bias is not None: |
|
|
bias = self.get_base_layer().bias |
|
|
orig_dtype = bias.dtype |
|
|
bias_data = bias.data |
|
|
new_bias = torch.matmul(road_R, bias_data.to(road_R.dtype)) |
|
|
bias.data = new_bias.to(orig_dtype) |
|
|
|
|
|
self.merged_adapters.append(active_adapter) |
|
|
|
|
|
def unmerge(self) -> None: |
|
|
""" |
|
|
This method unmerges all merged adapter layers from the base weights. |
|
|
""" |
|
|
if not self.merged: |
|
|
warnings.warn("Already unmerged. Nothing to do.") |
|
|
return |
|
|
|
|
|
while len(self.merged_adapters) > 0: |
|
|
active_adapter = self.merged_adapters.pop() |
|
|
if active_adapter in self._available_adapters: |
|
|
warnings.warn( |
|
|
"Unmerge oft module to 4-bit linear may get different generations due to rounding errors." |
|
|
) |
|
|
|
|
|
weight = self.get_base_layer().weight |
|
|
kwargs = weight.__dict__ |
|
|
output = dequantize_bnb_weight(weight, state=weight.quant_state) |
|
|
|
|
|
road_R = _get_delta_weight( |
|
|
self.variant[active_adapter], |
|
|
self.group_size[active_adapter], |
|
|
self.road_theta[active_adapter].data, |
|
|
self.road_alpha[active_adapter].data, |
|
|
) |
|
|
inv_road_R = torch.linalg.inv(road_R.to(torch.float32)).to(road_R.dtype) |
|
|
|
|
|
w_data = torch.matmul(inv_road_R, output.to(road_R.dtype)) |
|
|
w_data = w_data.to(road_R.dtype).to(road_R.device) |
|
|
|
|
|
if "bnb_quantized" in kwargs: |
|
|
kwargs["bnb_quantized"] = False |
|
|
kwargs["requires_grad"] = False |
|
|
kwargs.pop("data", None) |
|
|
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), **kwargs).to(weight.device) |
|
|
|
|
|
if self.get_base_layer().bias is not None: |
|
|
bias = self.get_base_layer().bias |
|
|
orig_dtype = bias.dtype |
|
|
bias_data = bias.data |
|
|
new_bias = torch.matmul(inv_road_R, bias_data) |
|
|
bias.data = new_bias.to(orig_dtype) |
|
|
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
|
if self.disable_adapters: |
|
|
if self.merged: |
|
|
self.unmerge() |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
elif self.merged: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
else: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for active_adapter in self.active_adapters: |
|
|
if active_adapter not in self._available_adapters: |
|
|
continue |
|
|
|
|
|
requires_conversion = not torch.is_autocast_enabled() |
|
|
if requires_conversion: |
|
|
expected_dtype = result.dtype |
|
|
result = self._cast_input_dtype(result, self.road_theta[active_adapter].dtype) |
|
|
|
|
|
result = _apply_road( |
|
|
self.variant[active_adapter], |
|
|
self.group_size[active_adapter], |
|
|
self.road_theta[active_adapter], |
|
|
self.road_alpha[active_adapter], |
|
|
result, |
|
|
) |
|
|
if requires_conversion: |
|
|
x = x.to(expected_dtype) |
|
|
|
|
|
return result |
|
|
|
|
|
def __repr__(self) -> str: |
|
|
rep = super().__repr__() |
|
|
return "oft." + rep |
|
|
|
|
|
def dispatch_bnb_4bit(target: torch.nn.Module, adapter_name: str, **kwargs): |
|
|
new_module = None |
|
|
|
|
|
if isinstance(target, BaseTunerLayer): |
|
|
target_base_layer = target.get_base_layer() |
|
|
else: |
|
|
target_base_layer = target |
|
|
|
|
|
loaded_in_4bit = kwargs.get("loaded_in_4bit", False) |
|
|
if loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit): |
|
|
fourbit_kwargs = kwargs.copy() |
|
|
fourbit_kwargs.update( |
|
|
{ |
|
|
"compute_dtype": target_base_layer.compute_dtype, |
|
|
"compress_statistics": target_base_layer.weight.compress_statistics, |
|
|
"quant_type": target_base_layer.weight.quant_type, |
|
|
} |
|
|
) |
|
|
new_module = Linear4bit(target, adapter_name, **fourbit_kwargs) |
|
|
|
|
|
return new_module |
|
|
|