Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import warnings
from typing import Optional
import bitsandbytes as bnb
import torch
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from peft.tuners.tuners_utils import check_adapters_to_merge
from peft.utils.integrations import dequantize_bnb_weight
from peft.utils.other import transpose
from .layer import RandLoraLayer, UniqueBaseGrad
if is_bnb_available():
class Linear8bitLt(torch.nn.Module, RandLoraLayer):
def __init__(
self,
base_layer: torch.nn.Module,
adapter_name: str,
randlora_A,
randlora_B,
r: int = 0,
randlora_alpha: int = 0,
randlora_dropout: float = 0.0,
fan_in_fan_out: bool = False,
init_weights: bool = True,
**kwargs,
) -> None:
super().__init__()
RandLoraLayer.__init__(self, base_layer)
self.fan_in_fan_out = fan_in_fan_out
self._active_adapter = adapter_name
self.update_layer(
adapter_name,
randlora_A,
randlora_B,
r,
randlora_alpha=randlora_alpha,
randlora_dropout=randlora_dropout,
init_weights=init_weights,
)
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`list[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged.
Defaults to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
return
for active_adapter in adapter_names:
if active_adapter not in self.randlora_lambda.keys():
continue
warnings.warn(
"Merge RandLora module to 8-bit linear may get different generations due to rounding errors."
)
randlora_data = self.get_delta_weight(active_adapter)
weight = self.get_base_layer().weight
state = self.get_base_layer().state
if state.SCB is None:
state.SCB = weight.SCB
output = dequantize_bnb_weight(weight, state)
w_data = output.to(randlora_data.dtype).to(randlora_data.device) + randlora_data
if safe_merge and not torch.isfinite(w_data).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
self.get_base_layer().weight = bnb.nn.Int8Params(
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights
).to(weight.device)
state.reset_grads()
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter not in self.randlora_lambda.keys():
continue
warnings.warn(
"Unmerge randlora module to 8-bit linear may get different generations due to rounding errors."
)
randlora_data = self.get_delta_weight(active_adapter)
weight = self.get_base_layer().weight
state = self.get_base_layer().state
if state.SCB is None:
state.SCB = weight.SCB
output = dequantize_bnb_weight(weight, state=state)
w_data = output.to(randlora_data.dtype).to(randlora_data.device) - randlora_data
self.get_base_layer().weight = bnb.nn.Int8Params(
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights
).to(weight.device)
state.reset_grads()
def get_scaled_bases(self, adapter, device=None) -> list[torch.Tensor, torch.Tensor]:
"""
Performs scaling on the smallest random base (randlora_A) and returns randlora_A and randlora_B in the
correct order to fit the target layers' dimensions
Args:
adapter (str):
The name of the adapter for which the delta weight should be computed.
"""
randlora_A = self.randlora_A[adapter]
randlora_B = self.randlora_B[adapter]
if device is None:
device = randlora_B.device
dtype = randlora_B.dtype
# In case users wants to merge the adapter weights that are in
# (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
# (b)float16 because some CPUs have slow bf16/fp16 matmuls.
cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16)
randlora_lambda = self.randlora_lambda[adapter].to(device)
randlora_gamma = self.randlora_gamma[adapter].to(device)
if cast_to_fp32:
randlora_A = randlora_A.float()
randlora_B = randlora_B.float()
randlora_lambda = randlora_lambda.float()
randlora_gamma = randlora_gamma.float()
# The trainable parameters are always applied to randlora_A, the smallest basis.
min_dim, max_dim = min(self.out_features, self.in_features), max(self.out_features, self.in_features)
# As adapted layers may have different shapes and RandLora contains a single shared pair of A and B matrices,
# we initialize these matrices with the largest required size for each dimension.
# During the forward pass, required submatrices are sliced out from the shared randlora_A and randlora_B.
sliced_A = randlora_A[:, : self.num_bases, :min_dim].to(device)
sliced_B = randlora_B[:max_dim, : self.num_bases, :].to(device)
# Flattening the matrices over the rank and number of bases dimensions is more memory efficient
update_B = sliced_B.flatten(start_dim=1)
update_A = UniqueBaseGrad.apply(sliced_A, randlora_lambda, randlora_gamma).flatten(end_dim=1)
if min_dim == self.in_features:
return update_A, update_B
return update_B.T, update_A.T
def get_delta_weight(self, adapter) -> torch.Tensor:
"""
Compute the delta weight for the given adapter.
Args:
adapter (str):
The name of the adapter for which the delta weight should be computed.
"""
update_B, update_A = self.get_scaled_bases(adapter)
update = update_B @ update_A
output_tensor = transpose(update, self.fan_in_fan_out)
scaling = self.scaling[adapter]
return output_tensor * scaling
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
"""
Perform the forward pass using the RandLora adapter.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after applying the RandLora adaptation.
Note:
This method implements the RandLora-specific forward pass. It applies the shared projections
(randlora_A and randlora_B) along with the per-layer trainable parameters (lambda and gamma) to compute
the adapter output.
"""
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
for active_adapter in self.active_adapters:
if active_adapter not in self.randlora_lambda.keys():
continue
update_B, update_A = self.get_scaled_bases(active_adapter, device=x.device)
requires_conversion = not torch.is_autocast_enabled()
if requires_conversion:
expected_dtype = result.dtype
compute_dtype = update_A.dtype
if x.dtype != compute_dtype:
x = x.to(compute_dtype)
dropout = self.randlora_dropout[active_adapter]
x_temp = dropout(x.to(update_A.dtype))
adapter_output = torch.nn.functional.linear(torch.nn.functional.linear(x_temp, update_B), update_A)
if requires_conversion:
adapter_output = adapter_output.to(expected_dtype)
scaling = self.scaling[active_adapter]
result = result + adapter_output * scaling
# Ensure the output tensor has the same dtype as the input tensor
return result.to(x.dtype)
def __repr__(self) -> str:
rep = super().__repr__()
return "randlora." + rep
if is_bnb_4bit_available():
class Linear4bit(torch.nn.Module, RandLoraLayer):
def __init__(
self,
base_layer: torch.nn.Module,
adapter_name: str,
randlora_A,
randlora_B,
r: int = 0,
randlora_alpha: int = 0,
randlora_dropout: float = 0.0,
fan_in_fan_out: bool = False,
init_weights: bool = True,
**kwargs,
) -> None:
super().__init__()
RandLoraLayer.__init__(self, base_layer)
self.fan_in_fan_out = fan_in_fan_out
self._active_adapter = adapter_name
self.update_layer(
adapter_name,
randlora_A,
randlora_B,
r,
randlora_alpha=randlora_alpha,
randlora_dropout=randlora_dropout,
init_weights=init_weights,
)
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`list[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged.
Defaults to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
return
for active_adapter in adapter_names:
if active_adapter not in self.randlora_lambda.keys():
continue
warnings.warn(
"Merge RandLora module to 4-bit linear may get different generations due to rounding errors."
)
randlora_data = self.get_delta_weight(active_adapter)
weight = self.get_base_layer().weight
kwargs = weight.__dict__
w_data = bnb.functional.dequantize_4bit(weight.data, weight.quant_state) + randlora_data
if safe_merge and not torch.isfinite(w_data).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to(
weight.device
)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter not in self.randlora_lambda.keys():
continue
warnings.warn(
"Unmerge RandLora module to 4-bit linear may get different generations due to rounding errors."
)
randlora_data = self.get_delta_weight(active_adapter)
weight = self.get_base_layer().weight
kwargs = weight.__dict__
w_data = bnb.functional.dequantize_4bit(weight.data, weight.quant_state) - randlora_data
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to(
weight.device
)
def get_scaled_bases(self, adapter, device=None) -> list[torch.Tensor, torch.Tensor]:
"""
Performs scaling on the smallest random base (randlora_A) and returns randlora_A and randlora_B in the
correct order to fit the target layers' dimensions
Args:
adapter (str):
The name of the adapter for which the delta weight should be computed.
"""
randlora_A = self.randlora_A[adapter]
randlora_B = self.randlora_B[adapter]
if device is None:
device = randlora_B.device
dtype = randlora_B.dtype
# In case users wants to merge the adapter weights that are in
# (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
# (b)float16 because some CPUs have slow bf16/fp16 matmuls.
cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16)
randlora_lambda = self.randlora_lambda[adapter].to(device)
randlora_gamma = self.randlora_gamma[adapter].to(device)
if cast_to_fp32:
randlora_A = randlora_A.float()
randlora_B = randlora_B.float()
randlora_lambda = randlora_lambda.float()
randlora_gamma = randlora_gamma.float()
# The trainable parameters are always applied to randlora_A, the smallest basis.
min_dim, max_dim = min(self.out_features, self.in_features), max(self.out_features, self.in_features)
# As adapted layers may have different shapes and RandLora contains a single shared pair of A and B matrices,
# we initialize these matrices with the largest required size for each dimension.
# During the forward pass, required submatrices are sliced out from the shared randlora_A and randlora_B.
sliced_A = randlora_A[:, : self.num_bases, :min_dim].to(device)
sliced_B = randlora_B[:max_dim, : self.num_bases, :].to(device)
# Flattening the matrices over the rank and number of bases dimensions is more memory efficient
update_B = sliced_B.flatten(start_dim=1)
update_A = UniqueBaseGrad.apply(sliced_A, randlora_lambda, randlora_gamma).flatten(end_dim=1)
if min_dim == self.in_features:
return update_A, update_B
return update_B.T, update_A.T
def get_delta_weight(self, adapter) -> torch.Tensor:
"""
Compute the delta weight for the given adapter.
Args:
adapter (str):
The name of the adapter for which the delta weight should be computed.
"""
update_B, update_A = self.get_scaled_bases(adapter)
update = update_B @ update_A
output_tensor = transpose(update, self.fan_in_fan_out)
scaling = self.scaling[adapter]
return output_tensor * scaling
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
result = result.clone()
for active_adapter in self.active_adapters:
if active_adapter not in self.randlora_lambda.keys():
continue
update_B, update_A = self.get_scaled_bases(active_adapter, device=x.device)
requires_conversion = not torch.is_autocast_enabled()
if requires_conversion:
expected_dtype = result.dtype
compute_dtype = update_A.dtype
if x.dtype != compute_dtype:
x = x.to(compute_dtype)
dropout = self.randlora_dropout[active_adapter]
x_temp = dropout(x.to(update_A.dtype))
adapter_output = torch.nn.functional.linear(torch.nn.functional.linear(x_temp, update_B), update_A)
if requires_conversion:
adapter_output = adapter_output.to(expected_dtype)
scaling = self.scaling[active_adapter]
result = result + adapter_output * scaling
# Ensure the output tensor has the same dtype as the input tensor
return result.to(x.dtype)
def __repr__(self) -> str:
rep = super().__repr__()
return "randlora." + rep