|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import warnings |
|
|
from typing import Optional |
|
|
|
|
|
import bitsandbytes as bnb |
|
|
import torch |
|
|
|
|
|
from peft.import_utils import is_bnb_4bit_available, is_bnb_available |
|
|
from peft.tuners.tuners_utils import check_adapters_to_merge |
|
|
from peft.utils.integrations import dequantize_bnb_weight |
|
|
from peft.utils.other import transpose |
|
|
|
|
|
from .layer import RandLoraLayer, UniqueBaseGrad |
|
|
|
|
|
|
|
|
if is_bnb_available(): |
|
|
|
|
|
class Linear8bitLt(torch.nn.Module, RandLoraLayer): |
|
|
def __init__( |
|
|
self, |
|
|
base_layer: torch.nn.Module, |
|
|
adapter_name: str, |
|
|
randlora_A, |
|
|
randlora_B, |
|
|
r: int = 0, |
|
|
randlora_alpha: int = 0, |
|
|
randlora_dropout: float = 0.0, |
|
|
fan_in_fan_out: bool = False, |
|
|
init_weights: bool = True, |
|
|
**kwargs, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
RandLoraLayer.__init__(self, base_layer) |
|
|
self.fan_in_fan_out = fan_in_fan_out |
|
|
|
|
|
self._active_adapter = adapter_name |
|
|
self.update_layer( |
|
|
adapter_name, |
|
|
randlora_A, |
|
|
randlora_B, |
|
|
r, |
|
|
randlora_alpha=randlora_alpha, |
|
|
randlora_dropout=randlora_dropout, |
|
|
init_weights=init_weights, |
|
|
) |
|
|
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: |
|
|
""" |
|
|
Merge the active adapter weights into the base weights |
|
|
|
|
|
Args: |
|
|
safe_merge (`bool`, *optional*): |
|
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
|
NaNs. Defaults to `False`. |
|
|
adapter_names (`list[str]`, *optional*): |
|
|
The list of adapter names that should be merged. If None, all active adapters will be merged. |
|
|
Defaults to `None`. |
|
|
""" |
|
|
|
|
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
|
if not adapter_names: |
|
|
return |
|
|
|
|
|
for active_adapter in adapter_names: |
|
|
if active_adapter not in self.randlora_lambda.keys(): |
|
|
continue |
|
|
|
|
|
warnings.warn( |
|
|
"Merge RandLora module to 8-bit linear may get different generations due to rounding errors." |
|
|
) |
|
|
randlora_data = self.get_delta_weight(active_adapter) |
|
|
|
|
|
weight = self.get_base_layer().weight |
|
|
state = self.get_base_layer().state |
|
|
if state.SCB is None: |
|
|
state.SCB = weight.SCB |
|
|
|
|
|
output = dequantize_bnb_weight(weight, state) |
|
|
w_data = output.to(randlora_data.dtype).to(randlora_data.device) + randlora_data |
|
|
|
|
|
if safe_merge and not torch.isfinite(w_data).all(): |
|
|
raise ValueError( |
|
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
|
) |
|
|
|
|
|
self.get_base_layer().weight = bnb.nn.Int8Params( |
|
|
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights |
|
|
).to(weight.device) |
|
|
state.reset_grads() |
|
|
self.merged_adapters.append(active_adapter) |
|
|
|
|
|
def unmerge(self) -> None: |
|
|
""" |
|
|
This method unmerges all merged adapter layers from the base weights. |
|
|
""" |
|
|
if not self.merged: |
|
|
warnings.warn("Already unmerged. Nothing to do") |
|
|
return |
|
|
|
|
|
while len(self.merged_adapters) > 0: |
|
|
active_adapter = self.merged_adapters.pop() |
|
|
if active_adapter not in self.randlora_lambda.keys(): |
|
|
continue |
|
|
warnings.warn( |
|
|
"Unmerge randlora module to 8-bit linear may get different generations due to rounding errors." |
|
|
) |
|
|
randlora_data = self.get_delta_weight(active_adapter) |
|
|
|
|
|
weight = self.get_base_layer().weight |
|
|
state = self.get_base_layer().state |
|
|
if state.SCB is None: |
|
|
state.SCB = weight.SCB |
|
|
output = dequantize_bnb_weight(weight, state=state) |
|
|
|
|
|
w_data = output.to(randlora_data.dtype).to(randlora_data.device) - randlora_data |
|
|
|
|
|
self.get_base_layer().weight = bnb.nn.Int8Params( |
|
|
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights |
|
|
).to(weight.device) |
|
|
state.reset_grads() |
|
|
|
|
|
def get_scaled_bases(self, adapter, device=None) -> list[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Performs scaling on the smallest random base (randlora_A) and returns randlora_A and randlora_B in the |
|
|
correct order to fit the target layers' dimensions |
|
|
|
|
|
Args: |
|
|
adapter (str): |
|
|
The name of the adapter for which the delta weight should be computed. |
|
|
""" |
|
|
|
|
|
randlora_A = self.randlora_A[adapter] |
|
|
randlora_B = self.randlora_B[adapter] |
|
|
|
|
|
if device is None: |
|
|
device = randlora_B.device |
|
|
dtype = randlora_B.dtype |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) |
|
|
|
|
|
randlora_lambda = self.randlora_lambda[adapter].to(device) |
|
|
randlora_gamma = self.randlora_gamma[adapter].to(device) |
|
|
|
|
|
if cast_to_fp32: |
|
|
randlora_A = randlora_A.float() |
|
|
randlora_B = randlora_B.float() |
|
|
randlora_lambda = randlora_lambda.float() |
|
|
randlora_gamma = randlora_gamma.float() |
|
|
|
|
|
|
|
|
min_dim, max_dim = min(self.out_features, self.in_features), max(self.out_features, self.in_features) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sliced_A = randlora_A[:, : self.num_bases, :min_dim].to(device) |
|
|
sliced_B = randlora_B[:max_dim, : self.num_bases, :].to(device) |
|
|
|
|
|
|
|
|
update_B = sliced_B.flatten(start_dim=1) |
|
|
update_A = UniqueBaseGrad.apply(sliced_A, randlora_lambda, randlora_gamma).flatten(end_dim=1) |
|
|
if min_dim == self.in_features: |
|
|
return update_A, update_B |
|
|
|
|
|
return update_B.T, update_A.T |
|
|
|
|
|
def get_delta_weight(self, adapter) -> torch.Tensor: |
|
|
""" |
|
|
Compute the delta weight for the given adapter. |
|
|
|
|
|
Args: |
|
|
adapter (str): |
|
|
The name of the adapter for which the delta weight should be computed. |
|
|
""" |
|
|
|
|
|
update_B, update_A = self.get_scaled_bases(adapter) |
|
|
|
|
|
update = update_B @ update_A |
|
|
output_tensor = transpose(update, self.fan_in_fan_out) |
|
|
|
|
|
scaling = self.scaling[adapter] |
|
|
|
|
|
return output_tensor * scaling |
|
|
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
|
""" |
|
|
Perform the forward pass using the RandLora adapter. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): Input tensor. |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Output tensor after applying the RandLora adaptation. |
|
|
|
|
|
Note: |
|
|
This method implements the RandLora-specific forward pass. It applies the shared projections |
|
|
(randlora_A and randlora_B) along with the per-layer trainable parameters (lambda and gamma) to compute |
|
|
the adapter output. |
|
|
""" |
|
|
if self.disable_adapters: |
|
|
if self.merged: |
|
|
self.unmerge() |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
elif self.merged: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
else: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
for active_adapter in self.active_adapters: |
|
|
if active_adapter not in self.randlora_lambda.keys(): |
|
|
continue |
|
|
|
|
|
update_B, update_A = self.get_scaled_bases(active_adapter, device=x.device) |
|
|
|
|
|
requires_conversion = not torch.is_autocast_enabled() |
|
|
if requires_conversion: |
|
|
expected_dtype = result.dtype |
|
|
compute_dtype = update_A.dtype |
|
|
if x.dtype != compute_dtype: |
|
|
x = x.to(compute_dtype) |
|
|
|
|
|
dropout = self.randlora_dropout[active_adapter] |
|
|
x_temp = dropout(x.to(update_A.dtype)) |
|
|
|
|
|
adapter_output = torch.nn.functional.linear(torch.nn.functional.linear(x_temp, update_B), update_A) |
|
|
|
|
|
if requires_conversion: |
|
|
adapter_output = adapter_output.to(expected_dtype) |
|
|
|
|
|
scaling = self.scaling[active_adapter] |
|
|
result = result + adapter_output * scaling |
|
|
|
|
|
|
|
|
return result.to(x.dtype) |
|
|
|
|
|
def __repr__(self) -> str: |
|
|
rep = super().__repr__() |
|
|
return "randlora." + rep |
|
|
|
|
|
|
|
|
if is_bnb_4bit_available(): |
|
|
|
|
|
class Linear4bit(torch.nn.Module, RandLoraLayer): |
|
|
def __init__( |
|
|
self, |
|
|
base_layer: torch.nn.Module, |
|
|
adapter_name: str, |
|
|
randlora_A, |
|
|
randlora_B, |
|
|
r: int = 0, |
|
|
randlora_alpha: int = 0, |
|
|
randlora_dropout: float = 0.0, |
|
|
fan_in_fan_out: bool = False, |
|
|
init_weights: bool = True, |
|
|
**kwargs, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
RandLoraLayer.__init__(self, base_layer) |
|
|
self.fan_in_fan_out = fan_in_fan_out |
|
|
self._active_adapter = adapter_name |
|
|
self.update_layer( |
|
|
adapter_name, |
|
|
randlora_A, |
|
|
randlora_B, |
|
|
r, |
|
|
randlora_alpha=randlora_alpha, |
|
|
randlora_dropout=randlora_dropout, |
|
|
init_weights=init_weights, |
|
|
) |
|
|
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: |
|
|
""" |
|
|
Merge the active adapter weights into the base weights |
|
|
|
|
|
Args: |
|
|
safe_merge (`bool`, *optional*): |
|
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
|
NaNs. Defaults to `False`. |
|
|
adapter_names (`list[str]`, *optional*): |
|
|
The list of adapter names that should be merged. If None, all active adapters will be merged. |
|
|
Defaults to `None`. |
|
|
""" |
|
|
|
|
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
|
if not adapter_names: |
|
|
return |
|
|
|
|
|
for active_adapter in adapter_names: |
|
|
if active_adapter not in self.randlora_lambda.keys(): |
|
|
continue |
|
|
|
|
|
warnings.warn( |
|
|
"Merge RandLora module to 4-bit linear may get different generations due to rounding errors." |
|
|
) |
|
|
randlora_data = self.get_delta_weight(active_adapter) |
|
|
|
|
|
weight = self.get_base_layer().weight |
|
|
kwargs = weight.__dict__ |
|
|
w_data = bnb.functional.dequantize_4bit(weight.data, weight.quant_state) + randlora_data |
|
|
|
|
|
if safe_merge and not torch.isfinite(w_data).all(): |
|
|
raise ValueError( |
|
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
|
) |
|
|
|
|
|
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to( |
|
|
weight.device |
|
|
) |
|
|
self.merged_adapters.append(active_adapter) |
|
|
|
|
|
def unmerge(self) -> None: |
|
|
""" |
|
|
This method unmerges all merged adapter layers from the base weights. |
|
|
""" |
|
|
if not self.merged: |
|
|
warnings.warn("Already unmerged. Nothing to do") |
|
|
return |
|
|
|
|
|
while len(self.merged_adapters) > 0: |
|
|
active_adapter = self.merged_adapters.pop() |
|
|
if active_adapter not in self.randlora_lambda.keys(): |
|
|
continue |
|
|
warnings.warn( |
|
|
"Unmerge RandLora module to 4-bit linear may get different generations due to rounding errors." |
|
|
) |
|
|
randlora_data = self.get_delta_weight(active_adapter) |
|
|
|
|
|
weight = self.get_base_layer().weight |
|
|
kwargs = weight.__dict__ |
|
|
w_data = bnb.functional.dequantize_4bit(weight.data, weight.quant_state) - randlora_data |
|
|
|
|
|
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to( |
|
|
weight.device |
|
|
) |
|
|
|
|
|
def get_scaled_bases(self, adapter, device=None) -> list[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Performs scaling on the smallest random base (randlora_A) and returns randlora_A and randlora_B in the |
|
|
correct order to fit the target layers' dimensions |
|
|
|
|
|
Args: |
|
|
adapter (str): |
|
|
The name of the adapter for which the delta weight should be computed. |
|
|
""" |
|
|
|
|
|
randlora_A = self.randlora_A[adapter] |
|
|
randlora_B = self.randlora_B[adapter] |
|
|
if device is None: |
|
|
device = randlora_B.device |
|
|
dtype = randlora_B.dtype |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) |
|
|
|
|
|
randlora_lambda = self.randlora_lambda[adapter].to(device) |
|
|
randlora_gamma = self.randlora_gamma[adapter].to(device) |
|
|
|
|
|
if cast_to_fp32: |
|
|
randlora_A = randlora_A.float() |
|
|
randlora_B = randlora_B.float() |
|
|
randlora_lambda = randlora_lambda.float() |
|
|
randlora_gamma = randlora_gamma.float() |
|
|
|
|
|
|
|
|
min_dim, max_dim = min(self.out_features, self.in_features), max(self.out_features, self.in_features) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sliced_A = randlora_A[:, : self.num_bases, :min_dim].to(device) |
|
|
sliced_B = randlora_B[:max_dim, : self.num_bases, :].to(device) |
|
|
|
|
|
update_B = sliced_B.flatten(start_dim=1) |
|
|
update_A = UniqueBaseGrad.apply(sliced_A, randlora_lambda, randlora_gamma).flatten(end_dim=1) |
|
|
if min_dim == self.in_features: |
|
|
return update_A, update_B |
|
|
|
|
|
return update_B.T, update_A.T |
|
|
|
|
|
def get_delta_weight(self, adapter) -> torch.Tensor: |
|
|
""" |
|
|
Compute the delta weight for the given adapter. |
|
|
|
|
|
Args: |
|
|
adapter (str): |
|
|
The name of the adapter for which the delta weight should be computed. |
|
|
""" |
|
|
update_B, update_A = self.get_scaled_bases(adapter) |
|
|
|
|
|
update = update_B @ update_A |
|
|
output_tensor = transpose(update, self.fan_in_fan_out) |
|
|
|
|
|
scaling = self.scaling[adapter] |
|
|
|
|
|
return output_tensor * scaling |
|
|
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
|
if self.disable_adapters: |
|
|
if self.merged: |
|
|
self.unmerge() |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
elif self.merged: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
else: |
|
|
result = self.base_layer(x, *args, **kwargs) |
|
|
result = result.clone() |
|
|
for active_adapter in self.active_adapters: |
|
|
if active_adapter not in self.randlora_lambda.keys(): |
|
|
continue |
|
|
|
|
|
update_B, update_A = self.get_scaled_bases(active_adapter, device=x.device) |
|
|
|
|
|
requires_conversion = not torch.is_autocast_enabled() |
|
|
if requires_conversion: |
|
|
expected_dtype = result.dtype |
|
|
compute_dtype = update_A.dtype |
|
|
if x.dtype != compute_dtype: |
|
|
x = x.to(compute_dtype) |
|
|
|
|
|
dropout = self.randlora_dropout[active_adapter] |
|
|
x_temp = dropout(x.to(update_A.dtype)) |
|
|
|
|
|
adapter_output = torch.nn.functional.linear(torch.nn.functional.linear(x_temp, update_B), update_A) |
|
|
|
|
|
if requires_conversion: |
|
|
adapter_output = adapter_output.to(expected_dtype) |
|
|
|
|
|
scaling = self.scaling[active_adapter] |
|
|
result = result + adapter_output * scaling |
|
|
|
|
|
|
|
|
return result.to(x.dtype) |
|
|
|
|
|
def __repr__(self) -> str: |
|
|
rep = super().__repr__() |
|
|
return "randlora." + rep |
|
|
|