Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer
from peft.utils import TRANSFORMERS_MODELS_TO_BONE_TARGET_MODULES_MAPPING
from .layer import BoneLayer, BoneLinear
class BoneModel(BaseTuner):
"""
Creates Householder reflection adaptation (Bone) model from a pretrained model. The method is described in
https://huggingface.co/papers/2409.15371
Args:
model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached.
config ([`BoneConfig`]): The configuration of the Bone model.
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
low_cpu_mem_usage (`bool`, `optional`, defaults to `False`):
Create empty adapter weights on meta device. Useful to speed up the loading process.
Returns:
`torch.nn.Module`: The Bone model.
Example:
```py
>>> from diffusers import StableDiffusionPipeline
>>> from peft import BoneModel, BoneConfig
>>> config_te = BoneConfig(
... r=8,
... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
... init_weights=True,
... )
>>> config_unet = BoneConfig(
... r=8,
... target_modules=[
... "proj_in",
... "proj_out",
... "to_k",
... "to_q",
... "to_v",
... "to_out.0",
... "ff.net.0.proj",
... "ff.net.2",
... ],
... init_weights=True,
... )
>>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> model.text_encoder = BoneModel(model.text_encoder, config_te, "default")
>>> model.unet = BoneModel(model.unet, config_unet, "default")
```
**Attributes**:
- **model** ([`~torch.nn.Module`]) -- The model to be adapted.
- **peft_config** ([`BoneConfig`]): The configuration of the Bone model.
"""
prefix: str = "bone_"
tuner_layer_cls = BoneLayer
target_module_mapping = TRANSFORMERS_MODELS_TO_BONE_TARGET_MODULES_MAPPING
def _create_and_replace(
self,
bone_config,
adapter_name,
target,
target_name,
parent,
current_key,
**optional_kwargs,
):
if current_key is None:
raise ValueError("Current Key shouldn't be `None`")
bias = hasattr(target, "bias") and target.bias is not None
kwargs = {
"r": bone_config.r,
"init_weights": bone_config.init_weights,
}
kwargs["bias"] = bias
# If it is not a BoneLayer, create a new module, else update it with new adapters
if not isinstance(target, BoneLayer):
new_module = self._create_new_module(bone_config, adapter_name, target, **kwargs)
if adapter_name not in self.active_adapters:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
else:
target.update_layer(
adapter_name,
r=bone_config.r,
init_weights=bone_config.init_weights,
)
@staticmethod
def _create_new_module(bone_config, adapter_name, target, **kwargs):
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if isinstance(target_base_layer, torch.nn.Linear):
new_module = BoneLinear(target, adapter_name, **kwargs)
else:
raise ValueError(
f"Target module {target} is not supported. Currently, only `torch.nn.Linear` is supported."
)
return new_module