Ramzes / src /peft /import_utils.py
Bordoglor's picture
Upload folder using huggingface_hub
302920f verified
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import importlib.metadata as importlib_metadata
import platform
from functools import lru_cache
import packaging.version
import torch
@lru_cache
def is_bnb_available() -> bool:
return importlib.util.find_spec("bitsandbytes") is not None
@lru_cache
def is_bnb_4bit_available() -> bool:
if not is_bnb_available():
return False
import bitsandbytes as bnb
return hasattr(bnb.nn, "Linear4bit")
@lru_cache
def is_auto_gptq_available():
if importlib.util.find_spec("auto_gptq") is not None:
AUTOGPTQ_MINIMUM_VERSION = packaging.version.parse("0.5.0")
version_autogptq = packaging.version.parse(importlib_metadata.version("auto_gptq"))
if AUTOGPTQ_MINIMUM_VERSION <= version_autogptq:
return True
else:
raise ImportError(
f"Found an incompatible version of auto-gptq. Found version {version_autogptq}, "
f"but only versions above {AUTOGPTQ_MINIMUM_VERSION} are supported"
)
@lru_cache
def is_gptqmodel_available():
if importlib.util.find_spec("gptqmodel") is not None:
GPTQMODEL_MINIMUM_VERSION = packaging.version.parse("2.0.0")
OPTIMUM_MINIMUM_VERSION = packaging.version.parse("1.24.0")
version_gptqmodel = packaging.version.parse(importlib_metadata.version("gptqmodel"))
if GPTQMODEL_MINIMUM_VERSION <= version_gptqmodel:
if is_optimum_available():
version_optimum = packaging.version.parse(importlib_metadata.version("optimum"))
if OPTIMUM_MINIMUM_VERSION <= version_optimum:
return True
else:
raise ImportError(
f"gptqmodel requires optimum version `{OPTIMUM_MINIMUM_VERSION}` or higher. Found version `{version_optimum}`, "
f"but only versions above `{OPTIMUM_MINIMUM_VERSION}` are supported"
)
else:
raise ImportError(
f"gptqmodel requires optimum version `{OPTIMUM_MINIMUM_VERSION}` or higher to be installed."
)
else:
raise ImportError(
f"Found an incompatible version of gptqmodel. Found version `{version_gptqmodel}`, "
f"but only versions above `{GPTQMODEL_MINIMUM_VERSION}` are supported"
)
@lru_cache
def is_optimum_available() -> bool:
return importlib.util.find_spec("optimum") is not None
@lru_cache
def is_torch_tpu_available(check_device=True):
"Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
if importlib.util.find_spec("torch_xla") is not None:
if check_device:
# We need to check if `xla_device` can be found, will raise a RuntimeError if not
try:
import torch_xla.core.xla_model as xm
_ = xm.xla_device()
return True
except RuntimeError:
return False
return True
return False
@lru_cache
def is_aqlm_available():
return importlib.util.find_spec("aqlm") is not None
@lru_cache
def is_auto_awq_available():
return importlib.util.find_spec("awq") is not None
@lru_cache
def is_eetq_available():
return importlib.util.find_spec("eetq") is not None
@lru_cache
def is_hqq_available():
return importlib.util.find_spec("hqq") is not None
@lru_cache
def is_inc_available():
return importlib.util.find_spec("neural_compressor") is not None
@lru_cache
def is_torchao_available():
if importlib.util.find_spec("torchao") is None:
return False
TORCHAO_MINIMUM_VERSION = packaging.version.parse("0.4.0")
try:
torchao_version = packaging.version.parse(importlib_metadata.version("torchao"))
except importlib_metadata.PackageNotFoundError:
# Same idea as in diffusers:
# https://github.com/huggingface/diffusers/blob/9f06a0d1a4a998ac6a463c5be728c892f95320a8/src/diffusers/utils/import_utils.py#L351-L357
# It's not clear under what circumstances `importlib_metadata.version("torchao")` can raise an error even
# though `importlib.util.find_spec("torchao") is not None` but it has been observed, so adding this for
# precaution.
return False
if torchao_version < TORCHAO_MINIMUM_VERSION:
raise ImportError(
f"Found an incompatible version of torchao. Found version {torchao_version}, "
f"but only versions above {TORCHAO_MINIMUM_VERSION} are supported"
)
return True
@lru_cache
def is_xpu_available(check_device=False):
"""
Checks if XPU acceleration is available and potentially if a XPU is in the environment
"""
system = platform.system()
if system == "Darwin":
return False
else:
if check_device:
try:
# Will raise a RuntimeError if no XPU is found
_ = torch.xpu.device_count()
return torch.xpu.is_available()
except RuntimeError:
return False
return hasattr(torch, "xpu") and torch.xpu.is_available()
@lru_cache
def is_diffusers_available():
return importlib.util.find_spec("diffusers") is not None