File size: 103,431 Bytes
302920f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 |
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import re
import unittest
from copy import deepcopy
import pytest
import torch
from diffusers import StableDiffusionPipeline
from parameterized import parameterized
from torch import nn
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
BitsAndBytesConfig,
)
from transformers.pytorch_utils import Conv1D
from peft import (
AdaptionPromptConfig,
IA3Config,
LoHaConfig,
LoraConfig,
PeftModel,
PromptTuningConfig,
VeraConfig,
get_layer_status,
get_model_status,
get_peft_model,
)
from peft.tuners.lora.layer import LoraLayer
from peft.tuners.tuners_utils import (
BaseTuner,
BaseTunerLayer,
_maybe_include_all_linear_layers,
check_target_module_exists,
inspect_matched_modules,
)
from peft.tuners.tuners_utils import (
_find_minimal_target_modules as find_minimal_target_modules,
)
from peft.utils import INCLUDE_LINEAR_LAYERS_SHORTHAND, ModulesToSaveWrapper, infer_device
from peft.utils.constants import DUMMY_MODEL_CONFIG, MIN_TARGET_MODULES_FOR_OPTIMIZATION
from .testing_utils import hub_online_once, require_bitsandbytes, require_non_cpu
# Implements tests for regex matching logic common for all BaseTuner subclasses, and
# tests for correct behaviour with different config kwargs for BaseTuners (Ex: feedforward for IA3, etc) and
# tests for utility function to include all linear layers
REGEX_TEST_CASES = [
# tuple of
# 1. key
# 2. target_modules
# 3. layers_to_transform
# 4. layers_pattern
# 5. expected result
# some basic examples
("", [], None, None, False),
("", ["foo"], None, None, False),
("foo", [], None, None, False),
("foo", ["foo"], None, None, True),
("foo", ["bar"], None, None, False),
("foo", ["foo", "bar"], None, None, True),
# with regex
("foo", "foo", None, None, True),
("foo", ".*oo", None, None, True),
("foo", "fo.*", None, None, True),
("foo", ".*bar.*", None, None, False),
("foobar", ".*oba.*", None, None, True),
# with layers_to_transform
("foo.bar.1.baz", ["baz"], [1], ["bar"], True),
("foo.bar.1.baz", ["baz"], [0], ["bar"], False),
("foo.bar.1.baz", ["baz"], [2], ["bar"], False),
("foo.bar.10.baz", ["baz"], [0], ["bar"], False),
("foo.bar.10.baz", ["baz"], [1], ["bar"], False),
("foo.bar.1.baz", ["baz"], [0, 1, 2], ["bar"], True),
("foo.bar.1.baz", ["baz", "spam"], [1], ["bar"], True),
("foo.bar.1.baz", ["baz", "spam"], [0, 1, 2], ["bar"], True),
# empty layers_pattern
("foo.whatever.1.baz", ["baz"], [1], [], True),
("foo.whatever.1.baz", ["baz"], [0], [], False),
("foo.whatever.1.baz", ["baz"], [1], "", True),
("foo.whatever.1.baz", ["baz"], [0], "", False),
("foo.whatever.1.baz", ["baz"], [1], None, True),
("foo.whatever.1.baz", ["baz"], [0], None, False),
# some realistic examples: transformers model
("transformer.h.1.attn.attention.q_proj.foo", ["q_proj"], None, [], False),
("transformer.h.1.attn.attention.q_proj", [], None, [], False),
("transformer.h.1.attn.attention.q_proj", ["q_proj"], None, [], True),
("transformer.h.1.attn.attention.q_proj", ["q_proj", "v_proj"], None, [], True),
("transformer.h.1.attn.attention.resid_dropout", ["q_proj", "v_proj"], None, [], False),
("transformer.h.1.attn.attention.q_proj", ["q_proj"], [1], ["h"], True),
("transformer.h.1.attn.attention.q_proj", ["q_proj"], [0], ["h"], False),
("transformer.h.1.attn.attention.q_proj", ["q_proj"], [2], ["h"], False),
("transformer.h.1.attn.attention.q_proj", ["q_proj"], [0, 1, 2], ["h"], True),
("transformer.h.1.attn.attention.q_proj", ["q_proj", "v_proj"], [0, 1, 2], ["h"], True),
("foo.bar.q_proj", ["q_proj"], None, [], True),
("foo.bar.1.baz", ["baz"], [1], ["foo"], False),
# other corner cases. For ex, below is a case where layers_pattern
# is one of the target nn.modules
("foo.bar.1.baz", ["baz"], [1], ["baz"], False),
# here, layers_pattern is 'bar', but only keys that contain '.bar' are valid.
("bar.1.baz", ["baz"], [1], ["bar"], False),
("foo.bar.001.baz", ["baz"], [1], ["bar"], True),
("foo.bar.1.spam.2.baz", ["baz"], [1], ["bar"], True),
("foo.bar.2.spam.1.baz", ["baz"], [1], ["bar"], False),
# some realistic examples: module using nn.Sequential
# for the below test case, key should contain '.blocks' to be valid, because of how layers_pattern is matched
("blocks.1.weight", ["weight"], [1], ["blocks"], False),
("blocks.1.bias", ["weight"], [1], ["blocks"], False),
("mlp.blocks.1.weight", ["weight"], [1], ["blocks"], True),
("mlp.blocks.1.bias", ["weight"], [1], ["blocks"], False),
]
MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_CASES = [
# model_name, model_type, initial_target_modules, expected_target_modules
# test for a causal Llama model
(
"HuggingFaceH4/tiny-random-LlamaForCausalLM",
"causal",
INCLUDE_LINEAR_LAYERS_SHORTHAND,
["k_proj", "v_proj", "q_proj", "o_proj", "down_proj", "up_proj", "gate_proj"],
),
# test for a Llama model without the LM head
(
"HuggingFaceH4/tiny-random-LlamaForCausalLM",
"base",
INCLUDE_LINEAR_LAYERS_SHORTHAND,
["k_proj", "v_proj", "q_proj", "o_proj", "down_proj", "up_proj", "gate_proj"],
),
# test for gpt2 with Conv1D layers
("hf-internal-testing/tiny-random-gpt2", "causal", INCLUDE_LINEAR_LAYERS_SHORTHAND, ["c_attn", "c_proj", "c_fc"]),
# test for T5 model
(
"hf-internal-testing/tiny-random-t5",
"seq2seq",
INCLUDE_LINEAR_LAYERS_SHORTHAND,
["k", "q", "v", "o", "wi", "wo"],
),
# test for GPTNeoX. output module list should exclude classification head - which is named as "embed_out" instead of the usual "lm_head" for GPTNeoX
(
"hf-internal-testing/tiny-random-GPTNeoXForCausalLM",
"causal",
INCLUDE_LINEAR_LAYERS_SHORTHAND,
["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"],
),
]
# tests for a few args that should remain unchanged
MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_INTERNALS = [
# initial_target_modules, expected_target_modules
(["k_proj"], ["k_proj"]),
# test with target_modules as None
(None, None),
# test with target_modules as a regex expression
(".*(q_proj|v_proj)$", ".*(q_proj|v_proj)$"),
]
BNB_QUANTIZATIONS = [("4bit",), ("8bit",)]
BNB_TEST_CASES = [(x + y) for x in MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_CASES for y in BNB_QUANTIZATIONS]
class PeftCustomKwargsTester(unittest.TestCase):
r"""
Test if the PeftModel is instantiated with correct behaviour for custom kwargs. This includes:
- test if regex matching works correctly
- test if adapters handle custom kwargs the right way e.g. IA3 for `feedforward_modules`
"""
transformers_class_map = {"causal": AutoModelForCausalLM, "seq2seq": AutoModelForSeq2SeqLM, "base": AutoModel}
@parameterized.expand(REGEX_TEST_CASES)
def test_regex_matching_valid(self, key, target_modules, layers_to_transform, layers_pattern, expected_result):
# We use a LoRA Config for testing, but the regex matching function is common for all BaseTuner subclasses.
# example model_id for config initialization. key is matched only against the target_modules given, so this can be any model
model_id = "peft-internal-testing/tiny-OPTForCausalLM-lora"
config = LoraConfig(
base_model_name_or_path=model_id,
target_modules=target_modules,
layers_pattern=layers_pattern,
layers_to_transform=layers_to_transform,
)
actual_result = bool(check_target_module_exists(config, key))
assert actual_result == expected_result
def test_module_matching_lora(self):
# peft models that have a module matching method to inspect the matching modules to allow
# users to easily debug their configuration. Here we only test a single case, not all possible combinations of
# configs that could exist. This is okay as the method calls `check_target_module_exists` internally, which
# has been extensively tested above.
model_id = "hf-internal-testing/tiny-random-BloomForCausalLM"
with hub_online_once(model_id):
model = AutoModel.from_pretrained(model_id)
# by default, this model matches query_key_value
config = LoraConfig()
peft_model = get_peft_model(model, config)
output = inspect_matched_modules(peft_model) # inspects default adapter for peft_model
matched = output["matched"]
expected = [
"h.0.self_attention.query_key_value",
"h.1.self_attention.query_key_value",
"h.2.self_attention.query_key_value",
"h.3.self_attention.query_key_value",
"h.4.self_attention.query_key_value",
]
assert matched == expected # module lists should match exactly
# no overlap with matched modules
unmatched = output["unmatched"]
for key in expected:
assert key not in unmatched
def test_feedforward_matching_ia3(self):
model_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration"
with hub_online_once(model_id):
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
# simple example for just one t5 block for testing
config_kwargs = {
"target_modules": ".*encoder.*block.0.*(SelfAttention|EncDecAttention|DenseReluDense).(k|q|v|wo|wi)$",
"feedforward_modules": ["wo", "wi"],
}
config = IA3Config(base_model_name_or_path=model_id, **config_kwargs)
peft_model = get_peft_model(model, config)
output = inspect_matched_modules(peft_model) # inspects default adapter for peft_model
matched = output["matched"]
expected = [
"encoder.block.0.layer.0.SelfAttention.q",
"encoder.block.0.layer.0.SelfAttention.k",
"encoder.block.0.layer.0.SelfAttention.v",
"encoder.block.0.layer.1.DenseReluDense.wi",
"encoder.block.0.layer.1.DenseReluDense.wo",
]
expected_feedforward = [
"encoder.block.0.layer.1.DenseReluDense.wi",
"encoder.block.0.layer.1.DenseReluDense.wo",
]
assert matched == expected # not required since we do similar checks above, but just to be sure
module_dict = dict(model.named_modules())
for key in matched:
module = module_dict[key]
if key in expected_feedforward:
assert module.is_feedforward
else: # other IA3 modules should not be marked as feedforward
assert not module.is_feedforward
@parameterized.expand(MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_CASES)
def test_maybe_include_all_linear_layers_lora(
self, model_id, model_type, initial_target_modules, expected_target_modules
):
with hub_online_once(model_id):
model = self.transformers_class_map[model_type].from_pretrained(model_id)
config_cls = LoraConfig
self._check_match_with_expected_target_modules(
model_id, model, config_cls, initial_target_modules, expected_target_modules
)
@parameterized.expand(BNB_TEST_CASES)
@require_non_cpu
@require_bitsandbytes
def test_maybe_include_all_linear_layers_lora_bnb(
self, model_id, model_type, initial_target_modules, expected_target_modules, quantization
):
if quantization == "4bit":
config_kwargs = {"quantization_config": BitsAndBytesConfig(load_in_4bit=True)}
elif quantization == "8bit":
config_kwargs = {"quantization_config": BitsAndBytesConfig(load_in_8bit=True)}
with hub_online_once(model_id):
model = self.transformers_class_map[model_type].from_pretrained(
model_id, device_map="auto", **config_kwargs
)
config_cls = LoraConfig
self._check_match_with_expected_target_modules(
model_id, model, config_cls, initial_target_modules, expected_target_modules
)
def _check_match_with_expected_target_modules(
self, model_id, model, config_cls, initial_target_modules, expected_target_modules
):
"""
Helper function for the test for `_maybe_include_all_linear_layers`
"""
actual_config = config_cls(base_model_name_or_path=model_id, target_modules=initial_target_modules)
expected_config = config_cls(base_model_name_or_path=model_id, target_modules=expected_target_modules)
model_copy = deepcopy(model)
actual_model = get_peft_model(model, peft_config=actual_config)
expected_model = get_peft_model(model_copy, peft_config=expected_config)
expected_model_module_dict = dict(expected_model.named_modules())
# compare the two models and assert that all layers are of the same type
for name, actual_module in actual_model.named_modules():
expected_module = expected_model_module_dict[name]
assert type(actual_module) is type(expected_module)
def test_maybe_include_all_linear_layers_ia3_loha(self):
model_id, initial_target_modules, expected_target_modules = (
"HuggingFaceH4/tiny-random-LlamaForCausalLM",
INCLUDE_LINEAR_LAYERS_SHORTHAND,
["k_proj", "v_proj", "q_proj", "o_proj", "down_proj", "up_proj", "gate_proj"],
)
with hub_online_once(model_id):
model_ia3 = AutoModelForCausalLM.from_pretrained(model_id)
model_loha = deepcopy(model_ia3)
config_classes = [IA3Config, LoHaConfig]
models = [model_ia3, model_loha]
for config_cls, model in zip(config_classes, models):
self._check_match_with_expected_target_modules(
model_id, model, config_cls, initial_target_modules, expected_target_modules
)
@parameterized.expand(MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_INTERNALS)
def test_maybe_include_all_linear_layers_internals(self, initial_target_modules, expected_target_modules):
model_id = "HuggingFaceH4/tiny-random-LlamaForCausalLM"
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
config = LoraConfig(base_model_name_or_path=model_id, target_modules=initial_target_modules)
new_config = _maybe_include_all_linear_layers(config, model)
if isinstance(expected_target_modules, list):
# assert that expected and actual target_modules have the same items
assert set(new_config.target_modules) == set(expected_target_modules)
else:
assert new_config.target_modules == expected_target_modules
def test_maybe_include_all_linear_layers_diffusion(self):
model_id = "hf-internal-testing/tiny-sd-pipe"
with hub_online_once(model_id):
model = StableDiffusionPipeline.from_pretrained(model_id)
config = LoraConfig(base_model_name_or_path=model_id, target_modules="all-linear")
# all linear layers should be converted
num_linear = sum(isinstance(module, (nn.Linear, Conv1D)) for module in model.unet.modules())
model.unet = get_peft_model(model.unet, config)
num_lora = sum(isinstance(module, LoraLayer) for module in model.unet.modules())
assert num_lora == num_linear
def test_maybe_include_all_linear_does_not_target_classifier_head(self):
# See issue 2027
# Ensure that if a SEQ_CLS model is being used with target_modules="all-linear", the classification head is not
# targeted by the adapter layer.
model_id = "HuggingFaceH4/tiny-random-LlamaForCausalLM"
with hub_online_once(model_id):
model = AutoModelForSequenceClassification.from_pretrained(model_id, num_labels=10)
# sanity check
assert isinstance(model.score, nn.Linear)
num_linear = sum(isinstance(module, (nn.Linear, Conv1D)) for module in model.modules())
config = LoraConfig(task_type="SEQ_CLS", target_modules="all-linear")
model = get_peft_model(model, config)
assert isinstance(model.base_model.score, ModulesToSaveWrapper)
# the bug was that these were lora.Linear instances
assert isinstance(model.base_model.score.original_module, nn.Linear)
assert isinstance(model.base_model.score.modules_to_save["default"], nn.Linear)
# ensure that all but one linear layer was targeted by LoRA
num_lora = sum(isinstance(module, LoraLayer) for module in model.modules())
assert num_lora == num_linear - 1
@parameterized.expand(MAYBE_INCLUDE_ALL_LINEAR_LAYERS_TEST_CASES)
def test_all_linear_nested_targets_correct_layers(
self, model_id, model_type, initial_target_modules, expected_target_modules
):
# See 2390
# Ensure that if adapter layers are already applied, we don't get nested adapter layers (e.g. LoRA targeting the
# lora_A, lora_B layers)
with hub_online_once(model_id):
model = self.transformers_class_map[model_type].from_pretrained(model_id)
config_cls = LoraConfig
self._check_match_with_expected_target_modules(
model_id, model, config_cls, initial_target_modules, expected_target_modules
)
# re-use the same model, i.e. the adapter is already applied
self._check_match_with_expected_target_modules(
model_id, model, config_cls, initial_target_modules, expected_target_modules
)
def test_add_second_adapter_with_all_linear_works(self):
# See 2390 Similar test to test_all_linear_nested_targets_correct_layers above, but using add_adapter instead of
# calling get_peft_model in an already adapted model
model_id = "HuggingFaceH4/tiny-random-LlamaForCausalLM"
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
# important: don't reuse the first config, since config.target_modules will be overwritten, which would make the
# test pass trivially.
config0 = LoraConfig(target_modules=INCLUDE_LINEAR_LAYERS_SHORTHAND)
config1 = LoraConfig(target_modules=INCLUDE_LINEAR_LAYERS_SHORTHAND)
model = get_peft_model(model, config0)
model.add_adapter(adapter_name="other", peft_config=config1)
# both configs should result in the same target modules being chosen (remember that config.target_modules will
# be replaced by the actual set of target_modules)
assert config0.target_modules == config1.target_modules
for layer in model.base_model.model.model.layers:
projs = (
layer.self_attn.q_proj,
layer.self_attn.v_proj,
layer.self_attn.k_proj,
layer.mlp.gate_proj,
layer.mlp.up_proj,
layer.mlp.down_proj,
)
for proj in projs:
# the targted layer itself, which in the base model was the nn.Linear layer, is now a LoraLayer
assert isinstance(proj, LoraLayer)
# all children of that layer are still normal nn.Linear layers
assert isinstance(proj.base_layer, nn.Linear)
assert isinstance(proj.lora_A["default"], nn.Linear)
assert isinstance(proj.lora_B["default"], nn.Linear)
assert isinstance(proj.lora_A["other"], nn.Linear)
assert isinstance(proj.lora_B["other"], nn.Linear)
class MLP(nn.Module):
def __init__(self, bias=True):
super().__init__()
self.lin0 = nn.Linear(10, 20, bias=bias)
self.relu = nn.ReLU()
self.drop = nn.Dropout(0.5)
self.lin1 = nn.Linear(20, 2, bias=bias)
self.sm = nn.LogSoftmax(dim=-1)
class TestTargetedModuleNames(unittest.TestCase):
"""Check that the attribute targeted_module_names is correctly set.
This checks LoRA and IA³, but this should be sufficient, testing all other tuners is not necessary.
"""
def test_one_targeted_module_regex(self):
model = MLP()
model = get_peft_model(model, LoraConfig(target_modules="lin0"))
assert model.targeted_module_names == ["lin0"]
def test_two_targeted_module_regex(self):
model = MLP()
model = get_peft_model(model, LoraConfig(target_modules="lin.*"))
assert model.targeted_module_names == ["lin0", "lin1"]
def test_one_targeted_module_list(self):
model = MLP()
model = get_peft_model(model, LoraConfig(target_modules=["lin0"]))
assert model.targeted_module_names == ["lin0"]
def test_two_targeted_module_list(self):
model = MLP()
model = get_peft_model(model, LoraConfig(target_modules=["lin0", "lin1"]))
assert model.targeted_module_names == ["lin0", "lin1"]
def test_ia3_targeted_module_regex(self):
model = MLP()
model = get_peft_model(model, IA3Config(target_modules=".*lin.*", feedforward_modules=".*lin.*"))
assert model.targeted_module_names == ["lin0", "lin1"]
def test_ia3_targeted_module_list(self):
model = MLP()
model = get_peft_model(model, IA3Config(target_modules=["lin0", "lin1"], feedforward_modules=["lin0", "lin1"]))
assert model.targeted_module_names == ["lin0", "lin1"]
def test_realistic_example(self):
model_id = "hf-internal-testing/tiny-random-BloomForCausalLM"
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
config = LoraConfig(task_type="CAUSAL_LM")
model = get_peft_model(model, config)
expected = [
f"transformer.h.{i}.self_attention.query_key_value" for i in range(len(model.base_model.transformer.h))
]
assert model.targeted_module_names == expected
class TestTargetedParameterNames(unittest.TestCase):
"""Check that the attribute targeted_parameter_names (via target_parameters) is correctly set.
This is only implemented for LoRA. Regex matching is currently not implemented.
"""
def test_one_targeted_parameters_list(self):
model = MLP()
model = get_peft_model(model, LoraConfig(target_parameters=["lin0.weight"]))
assert model.targeted_parameter_names == ["lin0.weight"]
def test_two_targeted_parameters_list(self):
model = MLP()
model = get_peft_model(model, LoraConfig(target_parameters=["lin0.weight", "lin1.weight"]))
assert model.targeted_parameter_names == ["lin0.weight", "lin1.weight"]
def test_realistic_example(self):
model_id = "trl-internal-testing/tiny-random-LlamaForCausalLM"
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
config = LoraConfig(target_modules=[], task_type="CAUSAL_LM", target_parameters=["v_proj.weight"])
model = get_peft_model(model, config)
expected = [
f"model.layers.{i}.self_attn.v_proj.weight" for i in range(len(model.base_model.model.model.layers))
]
assert model.targeted_parameter_names == expected
class TestExcludedModuleNames(unittest.TestCase):
"""Check that the attribute exclude_module is correctly set.
This checks LoRA and IA³, but this should be sufficient, testing all other tuners is not necessary.
"""
def test_two_excluded_module_regex(self):
model = MLP()
model = get_peft_model(model, LoraConfig(target_modules=("lin.*"), exclude_modules="lin0"))
assert model.targeted_module_names == ["lin1"]
def test_two_excluded_module_list(self):
model = MLP()
model = get_peft_model(model, LoraConfig(target_modules=["lin0", "lin1"], exclude_modules="lin0"))
assert model.targeted_module_names == ["lin1"]
def test_multiple_excluded_modules_list(self):
model = MLP()
model = get_peft_model(model, LoraConfig(target_modules=["lin0", "lin1"], exclude_modules=["lin0"]))
assert model.targeted_module_names == ["lin1"]
def test_ia3_two_excluded_module_regex(self):
model = MLP()
model = get_peft_model(
model, IA3Config(target_modules=".*lin.*", feedforward_modules=".*lin.*", exclude_modules="lin0")
)
assert model.targeted_module_names == ["lin1"]
def test_ia3_multiple_excluded_modules_list(self):
model = MLP()
model = get_peft_model(
model, IA3Config(target_modules=["lin0", "lin1"], feedforward_modules=".*lin.*", exclude_modules=["lin1"])
)
assert model.targeted_module_names == ["lin0"]
def test_all_modules_excluded(self):
model = MLP()
with pytest.raises(ValueError, match="All modules were excluded"):
get_peft_model(
model,
LoraConfig(
target_modules=["lin0", "lin1", "relu", "drop", "sm"],
exclude_modules=["lin0", "lin1", "relu", "drop", "sm"],
),
)
def test_no_modules_matched(self):
model = MLP()
with pytest.raises(ValueError, match="Target modules .* not found in the base model"):
get_peft_model(model, LoraConfig(target_modules=["non_existent_module"]))
def test_some_modules_excluded_some_unmatched(self):
model = MLP()
with pytest.raises(ValueError, match="No modules were targeted for adaptation"):
get_peft_model(model, LoraConfig(target_modules=["lin0", "non_existent_module"], exclude_modules=["lin0"]))
def test_exclude_modules_not_used(self):
model = MLP()
with pytest.warns(UserWarning, match="You have passed exclude_modules=.* but no modules were excluded"):
get_peft_model(model, LoraConfig(target_modules=["lin1"], exclude_modules=["non_existent_module"]))
def test_realistic_example(self):
model_id = "hf-internal-testing/tiny-random-BloomForCausalLM"
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
config = LoraConfig(task_type="CAUSAL_LM", exclude_modules="transformer.h.2.self_attention.query_key_value")
model = get_peft_model(model, config)
expected = [
f"transformer.h.{i}.self_attention.query_key_value"
for i in range(len(model.base_model.transformer.h))
if i != 2
]
assert model.targeted_module_names == expected
class TestModelAndLayerStatus:
"""Check the methods `get_layer_status` and `get_model_status`.`
Note that we only test LoRA here but the same logic should work for other tuner types (if they support the
corresponding features like merging).
"""
torch_device = infer_device()
@pytest.fixture
def small_base_model_cls(self):
class SmallModel(nn.Module):
def __init__(self):
super().__init__()
self.lin0 = nn.Linear(10, 10)
self.lin1 = nn.Linear(10, 10)
return SmallModel
@pytest.fixture
def small_base_emb_model_cls(self):
class SmallEmbModel(nn.Module):
def __init__(self):
super().__init__()
self.lin0 = nn.Linear(10, 10)
self.emb = nn.Embedding(10, 10)
return SmallEmbModel
@pytest.fixture
def small_model(self, small_base_model_cls):
config = LoraConfig(target_modules="lin0")
return get_peft_model(small_base_model_cls(), config)
@pytest.fixture
def large_model(self):
class LargeModel(nn.Module):
def __init__(self):
super().__init__()
self.lin0 = nn.Linear(10, 10)
self.conv0 = nn.Conv2d(3, 10, 3)
self.emb0 = nn.Embedding(10, 10)
self.lin1 = nn.Linear(10, 10)
self.conv1 = nn.Conv2d(3, 10, 3)
self.emb1 = nn.Embedding(10, 10)
config0 = LoraConfig(target_modules=["lin0", "conv1", "emb0"])
config1 = LoraConfig(target_modules=["lin0", "lin1"], r=16)
model = get_peft_model(LargeModel(), config0)
model.add_adapter("other", config1)
return model
################
# layer status #
################
def test_layer_names_small(self, small_model):
layer_status = small_model.get_layer_status()
expected = ["model.lin0"]
assert [status.name for status in layer_status] == expected
def test_layer_names_large(self, large_model):
layer_status = large_model.get_layer_status()
result = sorted([status.name for status in layer_status])
expected = ["model.conv1", "model.emb0", "model.lin0", "model.lin1"]
assert result == expected
def test_module_type_small(self, small_model):
layer_status = small_model.get_layer_status()
assert [status.module_type for status in layer_status] == ["lora.Linear"]
def test_module_type_large(self, large_model):
layer_status = large_model.get_layer_status()
result = sorted([status.module_type for status in layer_status])
expected = ["lora.Conv2d", "lora.Embedding", "lora.Linear", "lora.Linear"]
assert result == expected
def test_enabled_small(self, small_model):
layer_status = small_model.get_layer_status()
assert [status.enabled for status in layer_status] == [True]
def test_enabled_large(self, large_model):
layer_status = large_model.get_layer_status()
result = [status.enabled for status in layer_status]
expected = [True, True, True, True]
assert result == expected
def test_enabled_irregular(self, large_model):
# this is an invalid state, but we should still test it
# disable a single layer
for module in large_model.modules():
if isinstance(module, BaseTunerLayer):
module.enable_adapters(False)
break
layer_status = large_model.get_layer_status()
result = [status.enabled for status in layer_status]
expected = [False, True, True, True]
assert result == expected
def test_active_adapters_small(self, small_model):
layer_status = small_model.get_layer_status()
assert [status.active_adapters for status in layer_status] == [["default"]]
def test_active_adapters_large(self, large_model):
layer_status = large_model.get_layer_status()
result = [status.active_adapters for status in layer_status]
# note: as currently implemented, the active adapter can be an adapter that does not exist on this specific
# layer, for instance, layer 3 (i.e. index 2) only has the "other" adapter but "default" is still shown as the
# active adapter
expected = [["default"], ["default"], ["default"], ["default"]]
assert result == expected
# switch to "other"
large_model.set_adapter("other")
layer_status = large_model.get_layer_status()
result = [status.active_adapters for status in layer_status]
expected = [["other"], ["other"], ["other"], ["other"]]
def test_merge_adapters_small(self, small_model):
layer_status = small_model.get_layer_status()
assert [status.merged_adapters for status in layer_status] == [[]]
assert [status.available_adapters for status in layer_status] == [["default"]]
# now merge "default"
small_model.merge_adapter(["default"])
layer_status = small_model.get_layer_status()
assert [status.merged_adapters for status in layer_status] == [["default"]]
assert [status.available_adapters for status in layer_status] == [["default"]]
def test_merge_adapters_large(self, large_model):
layer_status = large_model.get_layer_status()
result = [status.merged_adapters for status in layer_status]
assert result == [[], [], [], []]
# now merge "default"
large_model.merge_adapter(["default"])
layer_status = large_model.get_layer_status()
result = [status.merged_adapters for status in layer_status]
# default is on layer 0, 1, and 3
assert result == [["default"], ["default"], [], ["default"]]
# now merge "other"
large_model.unmerge_adapter()
large_model.merge_adapter(["other"])
layer_status = large_model.get_layer_status()
result = [status.merged_adapters for status in layer_status]
# other is on layer 0 and 2
assert result == [["other"], [], ["other"], []]
# now merge both
large_model.merge_adapter(["default", "other"])
layer_status = large_model.get_layer_status()
result = [status.merged_adapters for status in layer_status]
# default is on layer 0, 1, and 3, other is on layer 0 and 2
assert result == [["other", "default"], ["default"], ["other"], ["default"]]
def test_requires_grad_small(self, small_model):
layer_status = small_model.get_layer_status()
assert [status.requires_grad for status in layer_status] == [{"default": True}]
def test_requires_grad_large(self, large_model):
layer_status = large_model.get_layer_status()
result = [status.requires_grad for status in layer_status]
# default is on layer 0, 1, and 3, other is on layer 0 and 2
expected = [{"default": True, "other": False}, {"default": True}, {"other": False}, {"default": True}]
assert result == expected
# now activate "other"
large_model.set_adapter("other")
layer_status = large_model.get_layer_status()
result = [status.requires_grad for status in layer_status]
expected = [{"default": False, "other": True}, {"default": False}, {"other": True}, {"default": False}]
assert result == expected
# change requires grad, is now inconsistent with active/inactive adapter
large_model.set_requires_grad("default", requires_grad=True)
large_model.set_requires_grad("other", requires_grad=False)
layer_status = large_model.get_layer_status()
result = [status.requires_grad for status in layer_status]
expected = [{"default": True, "other": False}, {"default": True}, {"other": False}, {"default": True}]
assert result == expected
def test_requires_grad_irregular(self, large_model):
# inject an embedding layer with requires_grad=False
# this is an invalid state, but we should still test it
lora_embedding_A = nn.Parameter(torch.zeros(10, 10))
lora_embedding_B = nn.Parameter(torch.zeros(10, 10))
lora_embedding_A.requires_grad = False
lora_embedding_B.requires_grad = False
large_model.base_model.model.lin0.lora_embedding_A["default"] = lora_embedding_A
large_model.base_model.model.lin0.lora_embedding_B["default"] = lora_embedding_B
layer_status = large_model.get_layer_status()
result = [status.requires_grad for status in layer_status]
expected = [{"default": "irregular", "other": False}, {"default": True}, {"other": False}, {"default": True}]
assert result == expected
def test_available_adapters_small(self, small_model):
layer_status = small_model.get_layer_status()
result = [status.available_adapters for status in layer_status]
expected = [["default"]]
assert result == expected
def test_available_adapters_large(self, large_model):
layer_status = large_model.get_layer_status()
result = [status.available_adapters for status in layer_status]
expected = [["default", "other"], ["default"], ["other"], ["default"]]
assert result == expected
def test_devices_all_cpu_small(self, small_model):
layer_status = small_model.get_layer_status()
result = [status.devices for status in layer_status]
expected = [{"default": ["cpu"]}]
assert result == expected
def test_devices_all_cpu_large(self, large_model):
layer_status = large_model.get_layer_status()
result = [status.devices for status in layer_status]
expected = [
{"default": ["cpu"], "other": ["cpu"]},
{"default": ["cpu"]},
{"other": ["cpu"]},
{"default": ["cpu"]},
]
assert result == expected
def test_with_modules_to_save(self, small_base_model_cls):
# check that modules_to_save are correctly reported in layer status
model = small_base_model_cls()
config = LoraConfig(target_modules=["lin0"], modules_to_save=["lin1"])
model = get_peft_model(model, config)
layer_status = model.get_layer_status()
assert len(layer_status) == 2
status = layer_status[1] # for modules_to_save
assert status.name == "model.lin1"
assert status.module_type == "ModulesToSaveWrapper"
assert status.enabled is True
assert status.active_adapters == ["default"]
assert status.merged_adapters == []
assert status.available_adapters == ["default"]
assert status.requires_grad == {"default": True}
assert status.devices == {"default": ["cpu"]}
def test_with_trainable_tokens(self, small_base_emb_model_cls):
# check that trainable_token_indices are correctly reported in layer status
model = small_base_emb_model_cls()
config = LoraConfig(target_modules=["lin0"], trainable_token_indices={"emb": [0, 1, 2]})
model = get_peft_model(model, config)
layer_status = model.get_layer_status()
assert len(layer_status) == 2
status = layer_status[1] # for trainable tokens
assert status.name == "model.emb.token_adapter"
assert status.module_type == "TrainableTokensLayer"
assert status.enabled is True
assert status.active_adapters == ["default"]
assert status.merged_adapters == []
assert status.available_adapters == ["default"]
assert status.requires_grad == {"default": True}
assert status.devices == {"default": ["cpu"]}
@require_non_cpu
def test_devices_all_gpu_large(self, large_model):
large_model.to(self.torch_device)
layer_status = large_model.get_layer_status()
result = [status.devices for status in layer_status]
expected = [
{"default": [self.torch_device], "other": [self.torch_device]},
{"default": [self.torch_device]},
{"other": [self.torch_device]},
{"default": [self.torch_device]},
]
assert result == expected
@require_non_cpu
def test_devices_cpu_and_gpu_large(self, large_model):
# move the embedding layer to GPU
large_model.model.lin0.lora_A["default"] = large_model.model.lin0.lora_A["default"].to(self.torch_device)
layer_status = large_model.get_layer_status()
result = [status.devices for status in layer_status]
expected = [
{"default": ["cpu", self.torch_device], "other": ["cpu"]},
{"default": ["cpu"]},
{"other": ["cpu"]},
{"default": ["cpu"]},
]
assert result == expected
def test_target_parameters(self, large_model):
# don't check each attribute, just the relevant ones
# first remove the normal LoRA layers
large_model = large_model.merge_and_unload()
config = LoraConfig(target_parameters=["lin0.weight", "lin1.weight"])
large_model = get_peft_model(large_model, config)
layer_status = large_model.get_layer_status()
assert [status.name for status in layer_status] == ["model.lin0", "model.lin1"]
assert [status.module_type for status in layer_status] == ["lora.ParamWrapper"] * 2
def test_target_parameters_and_target_modules(self, large_model):
# don't check each attribute, just the relevant ones
# first remove the normal LoRA layers
large_model = large_model.merge_and_unload()
config = LoraConfig(target_parameters=["lin0.weight"], target_modules=["lin1"])
large_model = get_peft_model(large_model, config)
layer_status = large_model.get_layer_status()
assert [status.name for status in layer_status] == ["model.lin0", "model.lin1"]
assert [status.module_type for status in layer_status] == ["lora.ParamWrapper", "lora.Linear"]
################
# model status #
################
def test_base_model_type_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.base_model_type == "SmallModel"
def test_base_model_type_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.base_model_type == "LargeModel"
def test_base_model_type_transformers_automodel(self):
# ensure that this also works with transformers AutoModels
model_id = "google/flan-t5-small"
with hub_online_once(model_id):
model = AutoModel.from_pretrained(model_id)
model = get_peft_model(model, LoraConfig())
model_status = model.get_model_status()
assert model_status.base_model_type == "T5Model"
def test_adapter_model_type_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.adapter_model_type == "LoraModel"
def test_adapter_model_type_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.adapter_model_type == "LoraModel"
def test_peft_types_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.peft_types == {"default": "LORA"}
def test_peft_types_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.peft_types == {"default": "LORA", "other": "LORA"}
def test_nb_params_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.trainable_params == 160
assert model_status.total_params == 380
def test_nb_params_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.trainable_params == 616
assert model_status.total_params == 2236
def test_num_adapter_layers_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.num_adapter_layers == 1
def test_num_adapter_layers_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.num_adapter_layers == 4
def test_model_enabled_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.enabled is True
def test_model_enabled_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.enabled is True
def test_model_disabled_small(self, small_model):
small_model.disable_adapter_layers()
model_status = small_model.get_model_status()
assert model_status.enabled is False
def test_model_disabled_large(self, large_model):
large_model.disable_adapter_layers()
model_status = large_model.get_model_status()
assert model_status.enabled is False
def test_model_enabled_irregular(self, large_model):
# this is an invalid state, but we should still test it
# disable a single layer
for module in large_model.modules():
if isinstance(module, BaseTunerLayer):
module.enable_adapters(False)
break
model_status = large_model.get_model_status()
assert model_status.enabled == "irregular"
def test_model_enabled_irregular_with_modules_to_save(self, small_base_model_cls):
# check that modules_to_save are correctly reported in layer status
model = small_base_model_cls()
config = LoraConfig(target_modules=["lin0"], modules_to_save=["lin1"])
model = get_peft_model(model, config)
# disable only lin0
model.lin0.enable_adapters(False)
model_status = model.get_model_status()
# since lin1 is still enabled, the overall model status is "irregular"
assert model_status.enabled == "irregular"
def test_model_enabled_irregular_with_trainable_tokens(self, small_base_emb_model_cls):
# check that trainable_token_indices are correctly reported in layer status
model = small_base_emb_model_cls()
config = LoraConfig(target_modules=["lin0"], trainable_token_indices={"emb": [0, 1, 2]})
model = get_peft_model(model, config)
# disable only lin0
model.lin0.enable_adapters(False)
model_status = model.get_model_status()
# since emb is still enabled, the overall model status is "irregular"
assert model_status.enabled == "irregular"
def test_model_active_adapters_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.active_adapters == ["default"]
def test_model_active_adapters_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.active_adapters == ["default"]
large_model.set_adapter("other")
model_status = large_model.get_model_status()
assert model_status.active_adapters == ["other"]
def test_model_active_adapters_irregular(self, large_model):
# this is an invalid state, but we should still test it
# disable a single layer
for module in large_model.modules():
if isinstance(module, BaseTunerLayer):
# switch a single layer's active adapter from default to other
if module.active_adapters == ["default"]:
module._active_adapter = "other"
assert module.active_adapters == ["other"]
break
model_status = large_model.get_model_status()
assert model_status.active_adapters == "irregular"
def test_model_active_adapters_with_modules_to_save_irregular(self, small_base_model_cls):
# check that modules_to_save are correctly reported in layer status
model = small_base_model_cls()
config = LoraConfig(target_modules=["lin0"], modules_to_save=["lin1"])
model = get_peft_model(model, config)
model.add_adapter("other", config)
# switch modules_to_save to "other"
model.lin1.set_adapter("other")
model_status = model.get_model_status()
# since lin0 is still on "default", the overall model status is "irregular"
assert model_status.active_adapters == "irregular"
def test_model_active_adapters_with_trainable_tokens_irregular(self, small_base_emb_model_cls):
# check that trainable_token_indices are correctly reported in layer status
model = small_base_emb_model_cls()
config = LoraConfig(target_modules=["lin0"], trainable_token_indices={"emb": [0, 1, 2]})
model = get_peft_model(model, config)
model.add_adapter("other", config)
# switch trainable tokens to "other"
model.emb.set_adapter("other")
model_status = model.get_model_status()
# since lin0 is still on "default", the overall model status is "irregular"
assert model_status.active_adapters == "irregular"
def test_model_merged_adapters_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.merged_adapters == []
small_model.merge_adapter()
model_status = small_model.get_model_status()
assert model_status.merged_adapters == ["default"]
small_model.unmerge_adapter()
model_status = small_model.get_model_status()
assert model_status.merged_adapters == []
def test_model_merged_adapters_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.merged_adapters == []
large_model.merge_adapter(["default"])
model_status = large_model.get_model_status()
assert model_status.merged_adapters == ["default"]
large_model.unmerge_adapter()
large_model.merge_adapter(["other"])
model_status = large_model.get_model_status()
assert model_status.merged_adapters == ["other"]
large_model.unmerge_adapter()
large_model.merge_adapter(["default", "other"])
model_status = large_model.get_model_status()
assert model_status.merged_adapters == ["default", "other"]
def test_model_merged_adapters_irregular(self, large_model):
# this is an invalid state, but we should still test it
# by merging only lin0 of "default", we end up in a irregular state, because not all "default" layers are merged
large_model.base_model.lin0.merge(["default"])
model_status = large_model.get_model_status()
assert model_status.merged_adapters == "irregular"
def test_model_requires_grad_model_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.requires_grad == {"default": True}
def test_model_requires_grad_model_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.requires_grad == {"default": True, "other": False}
large_model.set_adapter("other")
model_status = large_model.get_model_status()
assert model_status.requires_grad == {"default": False, "other": True}
# change requires grad, is now inconsistent with active/inactive adapter
large_model.set_requires_grad("default", requires_grad=True)
large_model.set_requires_grad("other", requires_grad=False)
model_status = large_model.get_model_status()
assert model_status.requires_grad == {"default": True, "other": False}
def test_model_requires_grad_model_irregular(self, large_model):
# inject an embedding layer with requires_grad=False
# this is an invalid state, but we should still test it
lora_embedding_A = nn.Parameter(torch.zeros(10, 10))
lora_embedding_B = nn.Parameter(torch.zeros(10, 10))
lora_embedding_A.requires_grad = False
lora_embedding_B.requires_grad = False
large_model.base_model.model.lin0.lora_embedding_A["default"] = lora_embedding_A
large_model.base_model.model.lin0.lora_embedding_B["default"] = lora_embedding_B
model_status = large_model.get_model_status()
assert model_status.requires_grad == {"default": "irregular", "other": False}
def test_model_requires_irregular_with_modules_to_save(self, small_base_model_cls):
# check that modules_to_save are correctly reported in layer status
model = small_base_model_cls()
config = LoraConfig(target_modules=["lin0"], modules_to_save=["lin1"])
model = get_peft_model(model, config)
# set modules_to_save to requires_grad=False
model.lin1.modules_to_save.default.weight.requires_grad = False
model_status = model.get_model_status()
# since lin1 is still requires_grad=True, the overall model status is "irregular"
assert model_status.requires_grad == {"default": "irregular"}
def test_model_requires_irregular_with_trainable_tokens(self, small_base_emb_model_cls):
# check that trainable_token_indices are correctly reported in layer status
model = small_base_emb_model_cls()
config = LoraConfig(target_modules=["lin0"], trainable_token_indices={"emb": [0, 1, 2]})
model = get_peft_model(model, config)
# set trainable tokens to requires_grad=False
model.emb.token_adapter.trainable_tokens_delta.default.requires_grad = False
model_status = model.get_model_status()
# since emb is still requires_grad=True, the overall model status is "irregular"
assert model_status.requires_grad == {"default": "irregular"}
def test_model_available_adapters_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.available_adapters == ["default"]
def test_model_available_adapters_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.available_adapters == ["default", "other"]
def test_model_devices_all_cpu_small(self, small_model):
model_status = small_model.get_model_status()
assert model_status.devices == {"default": ["cpu"]}
def test_model_devices_all_cpu_large(self, large_model):
model_status = large_model.get_model_status()
assert model_status.devices == {"default": ["cpu"], "other": ["cpu"]}
@require_non_cpu
def test_model_devices_all_gpu_large(self, large_model):
large_model.to(self.torch_device)
model_status = large_model.get_model_status()
assert model_status.devices == {"default": [self.torch_device], "other": [self.torch_device]}
@require_non_cpu
def test_model_devices_cpu_and_gpu_large(self, large_model):
# move the embedding layer to GPU
large_model.model.lin0.lora_A["default"] = large_model.model.lin0.lora_A["default"].to(self.torch_device)
model_status = large_model.get_model_status()
assert model_status.devices == {"default": ["cpu", self.torch_device], "other": ["cpu"]}
def test_model_target_parameters(self, large_model):
# don't check each attribute, just the relevant ones
# first remove the normal LoRA layers
large_model = large_model.merge_and_unload()
config = LoraConfig(target_parameters=["lin0.weight", "lin1.weight"])
large_model = get_peft_model(large_model, config)
model_status = large_model.get_model_status()
model_status = large_model.get_model_status()
assert model_status.adapter_model_type == "LoraModel"
assert model_status.peft_types == {"default": "LORA", "other": "LORA"}
assert model_status.num_adapter_layers == 2
assert model_status.trainable_params == 2 * (8 * 10 + 10 * 8)
def test_model_target_parameters_and_target_modules(self, large_model):
# don't check each attribute, just the relevant ones
# first remove the normal LoRA layers
large_model = large_model.merge_and_unload()
config = LoraConfig(target_parameters=["lin0.weight"], target_modules=["lin1"])
large_model = get_peft_model(large_model, config)
model_status = large_model.get_model_status()
assert model_status.adapter_model_type == "LoraModel"
assert model_status.peft_types == {"default": "LORA", "other": "LORA"}
assert model_status.num_adapter_layers == 2
assert model_status.trainable_params == 2 * (8 * 10 + 10 * 8)
def test_model_status_with_modules_to_save(self, small_base_model_cls):
# check that modules_to_save are correctly reported in layer status
model = small_base_model_cls()
num_base_params = sum(p.numel() for p in small_base_model_cls().parameters())
config = LoraConfig(target_modules=["lin0"], modules_to_save=["lin1"])
model = get_peft_model(model, config)
model_status = model.get_model_status()
assert model_status.base_model_type == "SmallModel"
assert model_status.adapter_model_type == "LoraModel"
assert model_status.peft_types == {"default": "LORA"}
# 2 x 80 for LoRA, 100 for modules_to_save.weight, 10 for modules_to_save.bias
assert model_status.trainable_params == 2 * 80 + 100 + 10
assert model_status.total_params == 2 * 80 + 100 + 10 + num_base_params
assert model_status.num_adapter_layers == 2 # lin0 + lin1
assert model_status.enabled is True
assert model_status.active_adapters == ["default"]
assert model_status.merged_adapters == []
assert model_status.requires_grad == {"default": True}
assert model_status.available_adapters == ["default"]
assert model_status.devices == {"default": ["cpu"]} # all on CPU
def test_model_status_with_trainable_tokens(self, small_base_emb_model_cls):
# check that trainable_token_indices are correctly reported in layer status
model = small_base_emb_model_cls()
num_base_params = sum(p.numel() for p in small_base_emb_model_cls().parameters())
config = LoraConfig(target_modules=["lin0"], trainable_token_indices={"emb": [0, 1, 2]})
model = get_peft_model(model, config)
model_status = model.get_model_status()
assert model_status.base_model_type == "SmallEmbModel"
assert model_status.adapter_model_type == "LoraModel"
assert model_status.peft_types == {"default": "LORA"}
# 2 x 80 for LoRA, 3 x 10 for trainable tokens
assert model_status.trainable_params == 2 * 80 + 3 * 10
assert model_status.total_params == 2 * 80 + 3 * 10 + num_base_params
assert model_status.num_adapter_layers == 2
assert model_status.enabled is True
assert model_status.active_adapters == ["default"]
assert model_status.merged_adapters == []
assert model_status.requires_grad == {"default": True}
assert model_status.available_adapters == ["default"]
assert model_status.devices == {"default": ["cpu"]} # all on CPU
def test_loha_model(self):
# ensure that this also works with non-LoRA, it's not necessary to test all tuners
class SmallModel(nn.Module):
def __init__(self):
super().__init__()
self.lin0 = nn.Linear(10, 10)
self.lin1 = nn.Linear(10, 10)
base_model = SmallModel()
config = LoHaConfig(target_modules=["lin0", "lin1"], init_weights=False)
model = get_peft_model(base_model, config)
model_status = model.get_model_status()
layer_status = model.get_layer_status()
assert model_status.base_model_type == "SmallModel"
assert model_status.adapter_model_type == "LoHaModel"
assert model_status.peft_types == {"default": "LOHA"}
assert model_status.trainable_params == 640
assert model_status.total_params == 860
assert model_status.num_adapter_layers == 2
assert model_status.enabled is True
assert model_status.active_adapters == ["default"]
assert model_status.merged_adapters == []
assert model_status.requires_grad == {"default": True}
assert model_status.available_adapters == ["default"]
assert model_status.devices == {"default": ["cpu"]}
layer_status0 = layer_status[0]
assert len(layer_status) == 2
assert layer_status0.name == "model.lin0"
assert layer_status0.module_type == "loha.Linear"
assert layer_status0.enabled is True
assert layer_status0.active_adapters == ["default"]
assert layer_status0.merged_adapters == []
assert layer_status0.requires_grad == {"default": True}
assert layer_status0.available_adapters == ["default"]
assert layer_status0.devices == {"default": ["cpu"]}
@require_non_cpu
def test_vera_model(self):
# let's also test VeRA because it uses BufferDict
class SmallModel(nn.Module):
def __init__(self):
super().__init__()
self.lin0 = nn.Linear(10, 10)
self.lin1 = nn.Linear(10, 10)
base_model = SmallModel()
config = VeraConfig(target_modules=["lin0", "lin1"], init_weights=False)
model = get_peft_model(base_model, config)
# move the buffer dict to GPU
model.lin0.vera_A["default"] = model.lin0.vera_A["default"].to(self.torch_device)
model_status = model.get_model_status()
layer_status = model.get_layer_status()
assert model_status.base_model_type == "SmallModel"
assert model_status.adapter_model_type == "VeraModel"
assert model_status.peft_types == {"default": "VERA"}
assert model_status.trainable_params == 532
assert model_status.total_params == 752
assert model_status.num_adapter_layers == 2
assert model_status.enabled is True
assert model_status.active_adapters == ["default"]
assert model_status.merged_adapters == []
assert model_status.requires_grad == {"default": True}
assert model_status.available_adapters == ["default"]
assert model_status.devices == {"default": ["cpu", self.torch_device]}
layer_status0 = layer_status[0]
assert len(layer_status) == 2
assert layer_status0.name == "model.lin0"
assert layer_status0.module_type == "vera.Linear"
assert layer_status0.enabled is True
assert layer_status0.active_adapters == ["default"]
assert layer_status0.merged_adapters == []
assert layer_status0.requires_grad == {"default": True}
assert layer_status0.available_adapters == ["default"]
assert layer_status0.devices == {"default": ["cpu", self.torch_device]}
###################
# non-PEFT models #
###################
def test_transformers_model(self):
model_id = "peft-internal-testing/gpt2-lora-random"
# note that loading through AutoModelForCausalLM.from_pretrained does not enable training mode, hence
# requires_grad=False
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
model_status = get_model_status(model)
layer_status = get_layer_status(model)
assert model_status.base_model_type == "GPT2LMHeadModel"
assert model_status.adapter_model_type == "None"
assert model_status.peft_types == {}
assert model_status.trainable_params == 0
assert model_status.total_params == 124734720
assert model_status.num_adapter_layers == 12
assert model_status.enabled is True
assert model_status.active_adapters == ["default"]
assert model_status.merged_adapters == []
assert model_status.requires_grad == {"default": False}
assert model_status.available_adapters == ["default"]
assert model_status.devices == {"default": ["cpu"]}
layer_status0 = layer_status[0]
assert len(layer_status) == 12
assert layer_status0.name == "transformer.h.0.attn.c_attn"
assert layer_status0.module_type == "lora.Linear"
assert layer_status0.enabled is True
assert layer_status0.active_adapters == ["default"]
assert layer_status0.merged_adapters == []
assert layer_status0.requires_grad == {"default": False}
assert layer_status0.available_adapters == ["default"]
assert layer_status0.devices == {"default": ["cpu"]}
def test_model_with_injected_layers(self, large_model):
model = large_model.base_model.model
model_status = get_model_status(model)
layer_status = get_layer_status(model)
assert model_status.base_model_type == "other"
assert model_status.adapter_model_type == "None"
assert model_status.peft_types == {}
assert model_status.trainable_params == 616
assert model_status.total_params == 2236
assert model_status.num_adapter_layers == 4
assert model_status.enabled is True
assert model_status.active_adapters == ["default"]
assert model_status.merged_adapters == []
assert model_status.requires_grad == {"default": True, "other": False}
assert model_status.available_adapters == ["default", "other"]
assert model_status.devices == {"default": ["cpu"], "other": ["cpu"]}
layer_status1 = layer_status[1]
assert len(layer_status) == 4
assert layer_status1.name == "emb0"
assert layer_status1.module_type == "lora.Embedding"
assert layer_status1.enabled is True
assert layer_status1.active_adapters == ["default"]
assert layer_status1.merged_adapters == []
assert layer_status1.requires_grad == {"default": True}
assert layer_status1.available_adapters == ["default"]
assert layer_status1.devices == {"default": ["cpu"]}
###############
# error cases #
###############
def test_vanilla_model_raises(self):
model = nn.Linear(10, 10)
# note: full error message is longer
with pytest.raises(ValueError, match="No adapter layers found in the model"):
get_layer_status(model)
with pytest.raises(ValueError, match="No adapter layers found in the model"):
get_model_status(model)
def test_transformer_model_without_adapter_raises(self):
model_id = "gpt2"
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
# note: full error message is longer
with pytest.raises(ValueError, match="No adapter layers found in the model"):
get_layer_status(model)
with pytest.raises(ValueError, match="No adapter layers found in the model"):
get_model_status(model)
def test_prefix_tuning(self):
model_id = "hf-internal-testing/tiny-random-BartForConditionalGeneration"
with hub_online_once(model_id):
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
config = PromptTuningConfig(task_type="SEQ_2_SEQ_LM", num_virtual_tokens=10)
model = get_peft_model(model, config)
# note: full error message is longer
with pytest.raises(TypeError, match=re.escape("get_layer_status() got an invalid PeftModel instance")):
model.get_layer_status()
with pytest.raises(TypeError, match=re.escape("get_model_status() got an invalid PeftModel instance")):
model.get_model_status()
def test_adaption_prompt(self):
model_id = "HuggingFaceH4/tiny-random-LlamaForCausalLM"
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
config = AdaptionPromptConfig(adapter_layers=1, adapter_len=4)
model = get_peft_model(model, config)
# note: full error message is longer
with pytest.raises(TypeError, match=re.escape("get_layer_status() got an invalid PeftModel instance")):
model.get_layer_status()
with pytest.raises(TypeError, match=re.escape("get_model_status() got an invalid PeftModel instance")):
model.get_model_status()
def test_mixed_model_raises(self):
class SimpleNet(nn.Module):
def __init__(self, bias=True):
super().__init__()
# note: out_features must be > rank or else OFT will be an identity transform
self.lin0 = nn.Linear(10, 20, bias=bias)
self.relu = nn.ReLU()
self.lin1 = nn.Linear(20, 16, bias=bias)
def forward(self, X):
X = X.float()
X = self.lin0(X)
X = self.relu(X)
X = self.lin1(X)
return X
base_model = SimpleNet()
config0 = LoraConfig(target_modules=["lin0"], init_lora_weights=False)
config1 = LoHaConfig(target_modules=["lin0", "lin1"], init_weights=False)
model = get_peft_model(base_model, config0, adapter_name="adapter0", mixed="mixed")
model.add_adapter("adapter1", config1)
# note: full error message is longer
with pytest.raises(TypeError, match="get_layer_status is not supported for PeftMixedModel"):
model.get_layer_status()
with pytest.raises(TypeError, match="get_model_status is not supported for PeftMixedModel"):
model.get_model_status()
# Tests for BaseTuner
class MockModelConfig:
config = {"mock_key": "mock_value"}
def to_dict(self):
return self.config
@dataclasses.dataclass
class MockModelDataclassConfig:
mock_key: str
class ModelWithConfig(nn.Module):
def __init__(self):
self.config = MockModelConfig()
class ModelWithDictConfig(nn.Module):
def __init__(self):
self.config = MockModelConfig.config
class ModelWithDataclassConfig(nn.Module):
def __init__(self):
self.config = MockModelDataclassConfig(**MockModelConfig().to_dict())
class ModelWithNoConfig(nn.Module):
pass
class TestBaseTunerGetModelConfig(unittest.TestCase):
def test_get_model_config_use_to_dict(self):
config = BaseTuner.get_model_config(ModelWithConfig())
assert config == MockModelConfig.config
def test_get_model_config_as_dict(self):
config = BaseTuner.get_model_config(ModelWithDictConfig())
assert config == MockModelConfig.config
def test_get_model_config_with_no_config(self):
config = BaseTuner.get_model_config(ModelWithNoConfig())
assert config == DUMMY_MODEL_CONFIG
def test_get_model_config_with_dataclass(self):
config = BaseTuner.get_model_config(ModelWithDataclassConfig())
assert config == MockModelConfig.config
class TestBaseTunerWarnForTiedEmbeddings:
model_id = "HuggingFaceH4/tiny-random-LlamaForCausalLM"
warn_end_inject = "huggingface/peft/issues/2018."
warn_end_merge = (
"# Now use the original model but in untied format\n"
"model = AutoModelForCausalLM.from_pretrained(untied_model_dir)\n```\n"
)
def _get_peft_model(self, tie_word_embeddings, target_module):
with hub_online_once(self.model_id):
base_model = AutoModelForCausalLM.from_pretrained(self.model_id, tie_word_embeddings=tie_word_embeddings)
model = get_peft_model(
base_model,
LoraConfig(target_modules=[target_module]),
)
return model
def _is_warn_triggered(self, warning_list, endswith):
return any(str(warning.message).endswith(endswith) for warning in warning_list)
def test_warn_for_tied_embeddings_inject(self, recwarn):
self._get_peft_model(tie_word_embeddings=True, target_module="lm_head")
assert self._is_warn_triggered(recwarn.list, self.warn_end_inject)
def test_warn_for_tied_embeddings_merge(self, recwarn):
model = self._get_peft_model(tie_word_embeddings=True, target_module="lm_head")
model.merge_and_unload()
assert self._is_warn_triggered(recwarn.list, self.warn_end_merge)
def test_no_warn_for_untied_embeddings_inject(self, recwarn):
self._get_peft_model(tie_word_embeddings=False, target_module="lm_head")
assert not self._is_warn_triggered(recwarn.list, self.warn_end_inject)
def test_no_warn_for_untied_embeddings_merge(self, recwarn):
model_not_tied = self._get_peft_model(tie_word_embeddings=False, target_module="lm_head")
model_not_tied.merge_and_unload()
assert not self._is_warn_triggered(recwarn.list, self.warn_end_merge)
def test_no_warn_for_no_target_module_inject(self, recwarn):
self._get_peft_model(tie_word_embeddings=True, target_module="q_proj")
assert not self._is_warn_triggered(recwarn.list, self.warn_end_inject)
def test_no_warn_for_no_target_module_merge(self, recwarn):
model_no_target_module = self._get_peft_model(tie_word_embeddings=True, target_module="q_proj")
model_no_target_module.merge_and_unload()
assert not self._is_warn_triggered(recwarn.list, self.warn_end_merge)
class TestFindMinimalTargetModules:
@pytest.mark.parametrize(
"target_modules, other_module_names, expected",
[
(["bar"], [], {"bar"}),
(["foo"], ["bar"], {"foo"}),
(["1.foo", "2.foo"], ["3.foo", "4.foo"], {"1.foo", "2.foo"}),
# Could also return "bar.baz" but we want the shorter one
(["bar.baz"], ["foo.bar"], {"baz"}),
(["1.foo", "2.foo", "bar.baz"], ["3.foo", "bar.bla"], {"1.foo", "2.foo", "baz"}),
# Case with longer suffix chains and nested suffixes
(["a.b.c", "d.e.f", "g.h.i"], ["j.k.l", "m.n.o"], {"c", "f", "i"}),
(["a.b.c", "d.e.f", "g.h.i"], ["a.b.x", "d.x.f", "x.h.i"], {"c", "e.f", "g.h.i"}),
# Case with multiple items that can be covered by a single suffix
(["foo.bar.baz", "qux.bar.baz"], ["baz.bar.foo"], {"baz"}),
# Realistic examples
# Only match k_proj
(
["model.decoder.layers.{i}.self_attn.k_proj" for i in range(12)],
(
["model.decoder.layers.{i}.self_attn" for i in range(12)]
+ ["model.decoder.layers.{i}.self_attn.v_proj" for i in range(12)]
+ ["model.decoder.layers.{i}.self_attn.q_proj" for i in range(12)]
),
{"k_proj"},
),
# Match all k_proj except the one in layer 5 => no common suffix
(
["model.decoder.layers.{i}.self_attn.k_proj" for i in range(12) if i != 5],
(
["model.decoder.layers.5.self_attn.k_proj"]
+ ["model.decoder.layers.{i}.self_attn" for i in range(12)]
+ ["model.decoder.layers.{i}.self_attn.v_proj" for i in range(12)]
+ ["model.decoder.layers.{i}.self_attn.q_proj" for i in range(12)]
),
{"{i}.self_attn.k_proj" for i in range(12) if i != 5},
),
],
)
def test_find_minimal_target_modules(self, target_modules, other_module_names, expected):
# check all possible combinations of list and set
result = find_minimal_target_modules(target_modules, other_module_names)
assert result == expected
result = find_minimal_target_modules(set(target_modules), other_module_names)
assert result == expected
result = find_minimal_target_modules(target_modules, set(other_module_names))
assert result == expected
result = find_minimal_target_modules(set(target_modules), set(other_module_names))
assert result == expected
def test_find_minimal_target_modules_empty_raises(self):
with pytest.raises(ValueError, match="target_modules should be a list or set of strings"):
find_minimal_target_modules([], ["foo"])
with pytest.raises(ValueError, match="target_modules should be a list or set of strings"):
find_minimal_target_modules(set(), ["foo"])
def test_find_minimal_target_modules_contains_empty_string_raises(self):
target_modules = ["", "foo", "bar.baz"]
other_module_names = ["bar"]
with pytest.raises(ValueError, match="target_modules should not contain an empty string"):
find_minimal_target_modules(target_modules, other_module_names)
def test_find_minimal_target_modules_string_raises(self):
target_modules = "foo"
other_module_names = ["bar"]
with pytest.raises(ValueError, match="target_modules should be a list or set of strings"):
find_minimal_target_modules(target_modules, other_module_names)
@pytest.mark.parametrize(
"target_modules, other_module_names",
[
(["foo"], ["foo"]),
(["foo.bar"], ["foo.bar"]),
(["foo.bar", "spam", "eggs"], ["foo.bar"]),
(["foo.bar", "spam"], ["foo.bar", "eggs"]),
(["foo.bar"], ["foo.bar", "spam", "eggs"]),
],
)
def test_find_minimal_target_modules_not_disjoint_raises(self, target_modules, other_module_names):
msg = (
"target_modules and other_module_names contain common elements, this should not happen, please "
"open a GitHub issue at https://github.com/huggingface/peft/issues with the code to reproduce this issue"
)
with pytest.raises(ValueError, match=msg):
find_minimal_target_modules(target_modules, other_module_names)
def test_get_peft_model_applies_find_target_modules(self):
# Check that when calling get_peft_model, the target_module optimization is indeed applied if the length of
# target_modules is big enough. The resulting model itself should be unaffected.
torch.manual_seed(0)
model_id = "facebook/opt-125m" # must be big enough for optimization to trigger
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
# base case: specify target_modules in a minimal fashion
config = LoraConfig(init_lora_weights=False, target_modules=["q_proj", "v_proj"])
model = get_peft_model(model, config)
# this list contains all targeted modules listed separately
big_target_modules = [name for name, module in model.named_modules() if isinstance(module, LoraLayer)]
# sanity check
assert len(big_target_modules) > MIN_TARGET_MODULES_FOR_OPTIMIZATION
# make a "checksum" of the model for comparison
model_check_sum_before = sum(p.sum() for p in model.parameters())
# strip prefix so that the names they can be used as new target_modules
prefix_to_strip = "base_model.model.model."
big_target_modules = [name[len(prefix_to_strip) :] for name in big_target_modules]
del model
torch.manual_seed(0)
with hub_online_once(model_id):
model = AutoModelForCausalLM.from_pretrained(model_id)
# pass the big target_modules to config
config = LoraConfig(init_lora_weights=False, target_modules=big_target_modules)
model = get_peft_model(model, config)
# check that target modules have been condensed
assert model.peft_config["default"].target_modules == {"q_proj", "v_proj"}
# check that the resulting model is still the same
model_check_after = sum(p.sum() for p in model.parameters())
assert model_check_sum_before == model_check_after
def test_suffix_is_substring_of_other_suffix(self):
# This test is based on a real world bug found in diffusers. The issue was that we needed the suffix
# 'time_emb_proj' in the minimal target modules. However, if there already was the suffix 'proj' in the
# required_suffixes, 'time_emb_proj' would not be added because the test was `endswith(suffix)` and
# 'time_emb_proj' ends with 'proj'. The correct logic is to test if `endswith("." + suffix")`. The module names
# chosen here are only a subset of the hundreds of actual module names but this subset is sufficient to
# replicate the bug.
target_modules = [
"down_blocks.1.attentions.0.transformer_blocks.0.ff.net.0.proj",
"mid_block.attentions.0.transformer_blocks.0.ff.net.0.proj",
"up_blocks.0.attentions.0.transformer_blocks.0.ff.net.0.proj",
"mid_block.attentions.0.proj_out",
"up_blocks.0.attentions.0.proj_out",
"down_blocks.1.attentions.0.proj_out",
"up_blocks.0.resnets.0.time_emb_proj",
"down_blocks.0.resnets.0.time_emb_proj",
"mid_block.resnets.0.time_emb_proj",
]
other_module_names = [
"conv_in",
"time_proj",
"time_embedding",
"time_embedding.linear_1",
"add_time_proj",
"add_embedding",
"add_embedding.linear_1",
"add_embedding.linear_2",
"down_blocks",
"down_blocks.0",
"down_blocks.0.resnets",
"down_blocks.0.resnets.0",
"up_blocks",
"up_blocks.0",
"up_blocks.0.attentions",
"up_blocks.0.attentions.0",
"up_blocks.0.attentions.0.norm",
"up_blocks.0.attentions.0.transformer_blocks",
"up_blocks.0.attentions.0.transformer_blocks.0",
"up_blocks.0.attentions.0.transformer_blocks.0.norm1",
"up_blocks.0.attentions.0.transformer_blocks.0.attn1",
]
expected = {"time_emb_proj", "proj", "proj_out"}
result = find_minimal_target_modules(target_modules, other_module_names)
assert result == expected
def test_get_peft_modules_module_name_is_suffix_of_another_module(self):
# Solves the following bug:
# https://github.com/huggingface/diffusers/pull/9622#issuecomment-2404789721
# The cause for the bug is as follows: When we have, say, a module called "bar.0.query" that we want to target
# and another module called "foo_bar.0.query" that we don't want to target, there was potential for an error.
# This is not caused by _find_minimal_target_modules directly, but rather the bug was inside of
# BaseTuner.inject_adapter and how the names_no_target were chosen. Those used to be chosen based on suffix. In
# our example, however, "bar.0.query" is a suffix of "foo_bar.0.query", therefore "foo_bar.0.query" was *not*
# added to names_no_target when it should have. As a consequence, during the optimization, it looks like "query"
# is safe to use as target_modules because we don't see that it wrongly matches "foo_bar.0.query".
# ensure that we have sufficiently many modules to trigger the optimization
n_layers = MIN_TARGET_MODULES_FOR_OPTIMIZATION + 1
class InnerModule(nn.Module):
def __init__(self):
super().__init__()
self.query = nn.Linear(10, 10)
class OuterModule(nn.Module):
def __init__(self):
super().__init__()
# note that "transformer_blocks" is a suffix of "single_transformer_blocks"
self.transformer_blocks = nn.ModuleList([InnerModule() for _ in range(n_layers)])
self.single_transformer_blocks = nn.ModuleList([InnerModule() for _ in range(n_layers)])
# we want to match all "transformer_blocks" layers but not "single_transformer_blocks"
target_modules = [f"transformer_blocks.{i}.query" for i in range(n_layers)]
model = get_peft_model(OuterModule(), LoraConfig(target_modules=target_modules))
# sanity check: we should have n_layers PEFT layers in model.transformer_blocks
transformer_blocks = model.base_model.model.transformer_blocks
assert sum(isinstance(module, BaseTunerLayer) for module in transformer_blocks.modules()) == n_layers
# we should not have any PEFT layers in model.single_transformer_blocks
single_transformer_blocks = model.base_model.model.single_transformer_blocks
assert not any(isinstance(module, BaseTunerLayer) for module in single_transformer_blocks.modules())
# target modules should *not* be simplified to "query" as that would match "single_transformers_blocks" too
assert model.peft_config["default"].target_modules != {"query"}
def test_find_minimal_target_modules_does_not_error_with_ia3(self, tmp_path):
# See #2429
# There is an issue with the compression of the target_modules attribute when using IA³. There, we additionally
# have the feedforward_modules attribute, which must be subset of target_modules. When target_modules is shrunk,
# the subset check will fail. This test ensures that this doesn't happen.
n_layers = MIN_TARGET_MODULES_FOR_OPTIMIZATION + 1
class InnerModule(nn.Module):
def __init__(self):
super().__init__()
self.query = nn.Linear(10, 10)
class OuterModule(nn.Module):
def __init__(self):
super().__init__()
self.blocks = nn.ModuleList([InnerModule() for _ in range(n_layers)])
target_modules = [f"blocks.{i}.query" for i in range(n_layers)]
feedforward_modules = [f"blocks.{i}.query" for i in range(n_layers)]
# the subset check happens here
config = IA3Config(target_modules=target_modules, feedforward_modules=feedforward_modules)
# the optimization step happens here, after the subset check, so at first we're fine, but we will run into an
# issue after a save/load roundtrip
model = get_peft_model(OuterModule(), config)
model.save_pretrained(tmp_path)
del model
# does not raise
PeftModel.from_pretrained(OuterModule(), tmp_path)
class TestRankAndAlphaPattern:
@pytest.fixture
def model(self):
# we always target the foo layers, the *bar* layers are used as a control group to ensure that they are not
# accidentally targeted
class Inner(nn.Module):
def __init__(self):
super().__init__()
self.foo = nn.Linear(1, 1)
self.barfoo = nn.Linear(1, 1)
class Middle(nn.Module):
def __init__(self):
super().__init__()
self.foo = nn.Linear(1, 1)
self.foobar = nn.Linear(1, 1)
self.module = Inner()
class Outer(nn.Module):
def __init__(self):
super().__init__()
self.foo = nn.Linear(1, 1)
self.bar = nn.Linear(1, 1)
self.module = Middle()
# resulting model for overview:
# Outer(
# (foo): Linear(...)
# (bar): Linear(...)
# (module): Middle(
# (foo): Linear(...)
# (foobar): Linear(...)
# (module): Inner(
# (foo): Linear(...)
# (barfoo): Linear(...)
# )
# )
# )
return Outer()
def test_no_rank_nor_alpha_pattern(self, model):
# sanity check the default case, no rank or alpha pattern
config = LoraConfig(target_modules="all-linear")
model = get_peft_model(model, config).base_model.model
# r is the default rank and alpha, thus scaling is 1.0
assert model.foo.r["default"] == 8
assert model.foo.scaling["default"] == 1.0
assert model.bar.r["default"] == 8
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.r["default"] == 8
assert model.module.foo.scaling["default"] == 1.0
assert model.module.foobar.r["default"] == 8
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.r["default"] == 8
assert model.module.module.foo.scaling["default"] == 1.0
assert model.module.module.barfoo.r["default"] == 8
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_rank_and_alpha_pattern_no_matching_keys(self, model):
# sanity check for non-matching keys, no rank or alpha pattern
config = LoraConfig(target_modules="all-linear", rank_pattern={"bla": 4, "oof": 6}, alpha_pattern={"baz": 3})
model = get_peft_model(model, config).base_model.model
# r is the default rank and alpha, thus scaling is 1.0
assert model.foo.r["default"] == 8
assert model.foo.scaling["default"] == 1.0
assert model.bar.r["default"] == 8
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.r["default"] == 8
assert model.module.foo.scaling["default"] == 1.0
assert model.module.foobar.r["default"] == 8
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.r["default"] == 8
assert model.module.module.foo.scaling["default"] == 1.0
assert model.module.module.barfoo.r["default"] == 8
assert model.module.module.barfoo.scaling["default"] == 1.0
# below, we test all permutations for rank_pattern of targeting outer, middle, and inner foo layers:
def test_rank_pattern_target_all(self, model):
config = LoraConfig(target_modules="all-linear", rank_pattern={"foo": 16})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 16
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 16
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 16
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_outer(self, model):
config = LoraConfig(target_modules="all-linear", rank_pattern={"^foo": 16})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 16
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 8
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 8
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_middle(self, model):
config = LoraConfig(target_modules="all-linear", rank_pattern={"^module.foo": 16})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 8
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 16
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 8
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_inner(self, model):
config = LoraConfig(target_modules="all-linear", rank_pattern={"module.module.foo": 16})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 8
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 8
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 16
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_inner_with_caret(self, model):
# same as before, but using the caret in the regex should also work
config = LoraConfig(target_modules="all-linear", rank_pattern={"^module.module.foo": 16})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 8
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 8
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 16
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_middle_inner(self, model):
config = LoraConfig(target_modules="all-linear", rank_pattern={"module.foo": 16})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 8
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 16
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 16
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_middle_inner_different_ranks(self, model):
# same layers targeted as in previous test, but with different ranks
config = LoraConfig(target_modules="all-linear", rank_pattern={"^module.foo": 16, "^module.module.foo": 24})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 8
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 16
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 24
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_outer_middle(self, model):
config = LoraConfig(target_modules="all-linear", rank_pattern={"^foo": 16, "^module.foo": 24})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 16
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 24
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 8
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_outer_inner(self, model):
config = LoraConfig(target_modules="all-linear", rank_pattern={"^foo": 16, "module.module.foo": 24})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 16
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 8
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 24
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_outer_inner_with_caret(self, model):
# same as before, but using the caret in the regex should also work
config = LoraConfig(target_modules="all-linear", rank_pattern={"^foo": 16, "^module.module.foo": 24})
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 16
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 8
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 24
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_outer_middle_inner_with_caret(self, model):
# indicate each layer with a different rank and use the caret in the regex
config = LoraConfig(
target_modules="all-linear", rank_pattern={"^foo": 16, "^module.foo": 24, "^module.module.foo": 32}
)
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 16
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 24
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 32
assert model.module.module.barfoo.r["default"] == 8
def test_rank_pattern_target_outer_middle_inner_with_caret_dict_order(self, model):
# same as before, but change the order of the rank_pattern dict
config = LoraConfig(
target_modules="all-linear", rank_pattern={"^module.module.foo": 32, "^module.foo": 24, "^foo": 16}
)
model = get_peft_model(model, config).base_model.model
assert model.foo.r["default"] == 16
assert model.bar.r["default"] == 8
assert model.module.foo.r["default"] == 24
assert model.module.foobar.r["default"] == 8
assert model.module.module.foo.r["default"] == 32
assert model.module.module.barfoo.r["default"] == 8
# below, we test all permutations for alpha_pattern of targeting outer, middle, and inner foo layers:
# these tests are analogous to the rank_pattern tests above
def test_alpha_pattern_target_all(self, model):
config = LoraConfig(target_modules="all-linear", alpha_pattern={"foo": 4})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 0.5
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 0.5
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 0.5
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_outer(self, model):
config = LoraConfig(target_modules="all-linear", alpha_pattern={"^foo": 4})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 0.5
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 1.0
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 1.0
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_middle(self, model):
config = LoraConfig(target_modules="all-linear", alpha_pattern={"^module.foo": 4})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 1.0
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 0.5
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 1.0
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_inner(self, model):
config = LoraConfig(target_modules="all-linear", alpha_pattern={"module.module.foo": 4})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 1.0
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 1.0
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 0.5
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_inner_with_caret(self, model):
# same as before, but using the caret in the regex should also work
config = LoraConfig(target_modules="all-linear", alpha_pattern={"^module.module.foo": 4})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 1.0
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 1.0
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 0.5
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_middle_inner(self, model):
config = LoraConfig(target_modules="all-linear", alpha_pattern={"module.foo": 4})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 1.0
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 0.5
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 0.5
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_middle_inner_different_alphas(self, model):
# same layers targeted as in previous test, but with different alphas
config = LoraConfig(target_modules="all-linear", alpha_pattern={"^module.foo": 4, "^module.module.foo": 2})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 1.0
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 0.5
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 0.25
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_outer_middle(self, model):
config = LoraConfig(target_modules="all-linear", alpha_pattern={"^foo": 4, "^module.foo": 2})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 0.5
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 0.25
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 1.0
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_outer_inner(self, model):
config = LoraConfig(target_modules="all-linear", alpha_pattern={"^foo": 4, "module.module.foo": 2})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 0.5
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 1.0
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 0.25
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_outer_inner_with_caret(self, model):
# same as before, but using the caret in the regex should also work
config = LoraConfig(target_modules="all-linear", alpha_pattern={"^foo": 4, "^module.module.foo": 2})
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 0.5
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 1.0
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 0.25
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_outer_middle_inner_with_caret(self, model):
# indicate each layer with a different alpha and use the caret in the regex
config = LoraConfig(
target_modules="all-linear", alpha_pattern={"^foo": 4, "^module.foo": 2, "^module.module.foo": 1}
)
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 0.5
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 0.25
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 0.125
assert model.module.module.barfoo.scaling["default"] == 1.0
def test_alpha_pattern_target_outer_middle_inner_with_caret_dict_order(self, model):
# same as before, but change the order of the alpha_pattern dict
config = LoraConfig(
target_modules="all-linear", alpha_pattern={"^module.module.foo": 1, "^module.foo": 2, "^foo": 4}
)
model = get_peft_model(model, config).base_model.model
assert model.foo.scaling["default"] == 0.5
assert model.bar.scaling["default"] == 1.0
assert model.module.foo.scaling["default"] == 0.25
assert model.module.foobar.scaling["default"] == 1.0
assert model.module.module.foo.scaling["default"] == 0.125
assert model.module.module.barfoo.scaling["default"] == 1.0
|