Spaces:
Runtime error
Runtime error
Commit
·
5dc8399
1
Parent(s):
c8ddca9
update script
Browse files- app.py +21 -11
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,17 +1,24 @@
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
-
# Load the
|
| 6 |
-
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 10 |
-
|
| 11 |
-
# Ensure the tokenizer settings match those used during training
|
| 12 |
tokenizer.pad_token = tokenizer.eos_token
|
| 13 |
tokenizer.padding_side = "right"
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
# Set the model to evaluation mode
|
| 16 |
model.eval()
|
| 17 |
|
|
@@ -23,7 +30,7 @@ def generate_text(input_prompt):
|
|
| 23 |
with torch.no_grad():
|
| 24 |
output = model.generate(
|
| 25 |
input_ids,
|
| 26 |
-
max_length=
|
| 27 |
num_return_sequences=1,
|
| 28 |
temperature=0.7, # Control randomness
|
| 29 |
top_p=0.9, # Control diversity
|
|
@@ -35,13 +42,16 @@ def generate_text(input_prompt):
|
|
| 35 |
return generated_text
|
| 36 |
|
| 37 |
# Create a Gradio interface
|
| 38 |
-
|
| 39 |
fn=generate_text,
|
| 40 |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
| 41 |
outputs="text",
|
| 42 |
-
title="Text Generation with LLaMA",
|
| 43 |
-
description="
|
| 44 |
)
|
| 45 |
|
|
|
|
|
|
|
|
|
|
| 46 |
if __name__ == "__main__":
|
| 47 |
-
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
from peft import PeftModel
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
+
# Load the base model and tokenizer
|
| 7 |
+
base_model_path = "NousResearch/Llama-2-7b-chat-hf" # Path to the base model
|
| 8 |
+
tokenizer_path = "BoburAmirov/test-llama-uz" # Path to the tokenizer
|
| 9 |
|
| 10 |
+
# Load the tokenizer
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
|
|
|
|
|
|
|
| 12 |
tokenizer.pad_token = tokenizer.eos_token
|
| 13 |
tokenizer.padding_side = "right"
|
| 14 |
|
| 15 |
+
# Load the base model
|
| 16 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_path)
|
| 17 |
+
|
| 18 |
+
# Load the adapter
|
| 19 |
+
adapter_path = "BoburAmirov/test-llama-uz/adapter_model.safetensors"
|
| 20 |
+
model = PeftModel.from_pretrained(base_model, adapter_path)
|
| 21 |
+
|
| 22 |
# Set the model to evaluation mode
|
| 23 |
model.eval()
|
| 24 |
|
|
|
|
| 30 |
with torch.no_grad():
|
| 31 |
output = model.generate(
|
| 32 |
input_ids,
|
| 33 |
+
max_length=200, # Adjust max_length as needed
|
| 34 |
num_return_sequences=1,
|
| 35 |
temperature=0.7, # Control randomness
|
| 36 |
top_p=0.9, # Control diversity
|
|
|
|
| 42 |
return generated_text
|
| 43 |
|
| 44 |
# Create a Gradio interface
|
| 45 |
+
interface = gr.Interface(
|
| 46 |
fn=generate_text,
|
| 47 |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
| 48 |
outputs="text",
|
| 49 |
+
title="Text Generation with LLaMA-2",
|
| 50 |
+
description="Enter a prompt and get generated text from the fine-tuned LLaMA-2 model."
|
| 51 |
)
|
| 52 |
|
| 53 |
+
# Launch the Gradio interface
|
| 54 |
+
|
| 55 |
+
|
| 56 |
if __name__ == "__main__":
|
| 57 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
torch
|
| 2 |
transformers
|
| 3 |
-
gradio
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
transformers
|
| 3 |
+
gradio
|
| 4 |
+
peft
|