Spaces:
Sleeping
Sleeping
File size: 7,726 Bytes
2b1b4a0 647d7b9 2b1b4a0 17ddd97 2b1b4a0 31c4539 2b1b4a0 18d0c35 17ddd97 2b1b4a0 a325594 2b1b4a0 a325594 2b1b4a0 a325594 2b1b4a0 a325594 2b1b4a0 31c4539 2b1b4a0 18d0c35 31c4539 2b1b4a0 31c4539 2b1b4a0 31c4539 18d0c35 2b1b4a0 31c4539 2b1b4a0 31c4539 2b1b4a0 31c4539 2b1b4a0 647d7b9 2b1b4a0 e69f273 2b1b4a0 31c4539 647d7b9 2b1b4a0 e69f273 2b1b4a0 e69f273 647d7b9 2b1b4a0 31c4539 647d7b9 2b1b4a0 0570125 370cc4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import sys
import urllib.request
import torch
import gradio as gr
import jiwer
import difflib
import pyarabic.araby as araby
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
# ---------- Setup: Clone CATT repo & download diacritization models ----------
CATT_REPO_URL = "https://github.com/abjadai/catt.git"
CATT_FOLDER = "catt"
MODELS_DIR = "models"
ED_URL = "https://github.com/abjadai/catt/releases/download/v2/best_ed_mlm_ns_epoch_178.pt"
EO_URL = "https://github.com/abjadai/catt/releases/download/v2/best_eo_mlm_ns_epoch_193.pt"
os.makedirs(MODELS_DIR, exist_ok=True)
# Clone if needed
if not os.path.isdir(CATT_FOLDER):
os.system(f"git clone {CATT_REPO_URL}")
if CATT_FOLDER not in sys.path:
sys.path.append(CATT_FOLDER)
# Download checkpoints
for url in (ED_URL, EO_URL):
fname = os.path.basename(url)
dest = os.path.join(MODELS_DIR, fname)
if not os.path.isfile(dest):
urllib.request.urlretrieve(url, dest)
# Import CATT modules
from tashkeel_tokenizer import TashkeelTokenizer
from utils import remove_non_arabic
from ed_pl import TashkeelModel as TashkeelModel_ED
from eo_pl import TashkeelModel as TashkeelModel_EO
# Prepare tokenizer & device
tokenizer = TashkeelTokenizer()
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load diacritization models
def load_diacritization_models():
global model_ed, model_eo
max_seq_len = 1024
model_ed = TashkeelModel_ED(tokenizer, max_seq_len=max_seq_len, n_layers=3, learnable_pos_emb=False)
model_ed.load_state_dict(torch.load(os.path.join(MODELS_DIR, os.path.basename(ED_URL)), map_location=device))
model_ed.eval().to(device)
model_eo = TashkeelModel_EO(tokenizer, max_seq_len=max_seq_len, n_layers=6, learnable_pos_emb=False)
model_eo.load_state_dict(torch.load(os.path.join(MODELS_DIR, os.path.basename(EO_URL)), map_location=device))
model_eo.eval().to(device)
load_diacritization_models()
# ---------- Setup: Arabic syllable transcription pipelines ----------
ASR_PIPE = pipeline("automatic-speech-recognition", model="IbrahimSalah/Arabic_speech_Syllables_recognition_Using_Wav2vec2")
MT5_MODEL = AutoModelForSeq2SeqLM.from_pretrained("IbrahimSalah/Arabic_Syllables_to_text_Converter_Using_MT5")
MT5_TOKENIZER = AutoTokenizer.from_pretrained("IbrahimSalah/Arabic_Syllables_to_text_Converter_Using_MT5")
MT5_MODEL.eval()
# Arabic diacritics set
try:
DIACRITICS = {
araby.FATHA, araby.FATHATAN, araby.DAMMA, araby.DAMMATAN,
araby.KASRA, araby.KASRATAN, araby.SUKUN, araby.SHADDA,
}
except:
DIACRITICS = {'\u064B','\u064C','\u064D','\u064E','\u064F','\u0650','\u0651','\u0652'}
# ---------- Core Functions ----------
def diacritize_text(model_type, input_text):
"""
Returns the diacritized text twice: once for display, once for state storage.
"""
text_clean = remove_non_arabic(input_text.strip())
if not text_clean:
return "Please enter some Arabic text.", ""
x = [text_clean]
if model_type == "Encoder-Decoder":
outputs = model_ed.do_tashkeel_batch(x, batch_size=16, verbose=False)
else:
outputs = model_eo.do_tashkeel_batch(x, batch_size=16, verbose=False)
result = outputs[0] if outputs else ""
return result, result
def get_and_process_syllables(audio_path):
# ASR -> syllable sequence -> MT5 conversion
clip = ASR_PIPE(audio_path)["text"]
seq = "|" + clip.replace(" ", "|") + "."
input_ids = MT5_TOKENIZER.encode(seq, return_tensors="pt")
out_ids = MT5_MODEL.generate(
input_ids,
max_length=100,
early_stopping=True,
pad_token_id=MT5_TOKENIZER.pad_token_id,
bos_token_id=MT5_TOKENIZER.bos_token_id,
eos_token_id=MT5_TOKENIZER.eos_token_id,
)
text = MT5_TOKENIZER.decode(out_ids[0][1:], skip_special_tokens=True).split('.')[0]
return text, seq
def get_diacritics_sequence(txt):
return ' '.join([c for c in txt if c in DIACRITICS])
def calculate_metrics(ref, hyp):
if not ref.strip() and not hyp.strip(): return 0.0, 0.0, 0.0
if not ref.strip(): return 1.0, 1.0, 1.0
wer = jiwer.wer(ref, hyp)
ref_d, hyp_d = get_diacritics_sequence(ref), get_diacritics_sequence(hyp)
der = 0.0 if (not ref_d and not hyp_d) else (1.0 if not ref_d else jiwer.wer(ref_d, hyp_d))
cer = jiwer.cer(ref, hyp)
return round(wer,4), round(der,4), round(cer,4)
def highlight_errors(ref, hyp):
ref_w, hyp_w = ref.split(), hyp.split()
matcher = difflib.SequenceMatcher(None, ref_w, hyp_w, autojunk=False)
out_words, errs = [], []
for tag, i1, i2, j1, j2 in matcher.get_opcodes():
if tag == 'equal':
out_words.extend(hyp_w[j1:j2])
elif tag == 'replace':
for w in hyp_w[j1:j2]: out_words.append(f"<mark style='background-color:#ffcccb;'>{w}</mark>")
errs.extend(ref_w[i1:i2] + hyp_w[j1:j2])
elif tag == 'delete':
errs.extend(ref_w[i1:i2])
elif tag == 'insert':
for w in hyp_w[j1:j2]: out_words.append(f"<mark style='background-color:#ccffcc;'>{w}</mark>")
errs.extend(hyp_w[j1:j2])
return ' '.join(out_words), ', '.join(sorted(set(errs)))
def process_audio_and_compare(audio_path, reference_text):
if not audio_path:
return *("Error: No audio provided.",)*2, None, None, None, "", ""
if not reference_text.strip():
return *("Error: No reference text.",)*2, None, None, None, "", ""
hyp, syll = get_and_process_syllables(audio_path)
wer, der, cer = calculate_metrics(reference_text, hyp) if not hyp.startswith("Error") else (None,None,None)
html_out, errs = highlight_errors(reference_text, hyp) if not hyp.startswith("Error") else ("", "")
return hyp, syll, wer, der, cer, html_out, errs
# ---------- Gradio Interface ----------
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("""
# Arabic Diacritization & Reading Assessment
1. Enter undiacritized Arabic text → Diacritize.
2. Optionally edit the diacritized result.
3. Record/upload audio → Transcribe & Compare.
""")
ref_state = gr.State("")
with gr.Row():
with gr.Column(scale=1):
text_in = gr.Textbox(label="Undiacritized Arabic Text", lines=3, text_align="right")
model_sel = gr.Dropdown(choices=["Encoder-Only","Encoder-Decoder"], value="Encoder-Only", label="Model")
diac_btn = gr.Button("Diacritize Text")
diac_out = gr.Textbox(label="Diacritized Text (Reference)", lines=3, text_align="right", interactive=True)
diac_btn.click(fn=diacritize_text, inputs=[model_sel, text_in], outputs=[diac_out, ref_state])
diac_out.change(fn=lambda text: text, inputs=diac_out, outputs=ref_state)
with gr.Column(scale=1):
audio_in = gr.Audio(label="Record/Upload Audio", type="filepath")
trans_btn = gr.Button("Transcribe & Compare")
hyp_out = gr.Textbox(label="Transcript (Hypothesis)", lines=3, text_align="right")
syl_out = gr.Textbox(label="Transcript Syllables", lines=3, text_align="right")
wer_n = gr.Number(label="WER", precision=4)
der_n = gr.Number(label="DER", precision=4)
cer_n = gr.Number(label="CER", precision=4)
err_html = gr.HTML(label="Highlighted Errors")
err_list = gr.Textbox(label="Error Words")
trans_btn.click(
fn=process_audio_and_compare,
inputs=[audio_in, ref_state],
outputs=[hyp_out, syl_out, wer_n, der_n, cer_n, err_html, err_list]
)
# Launch
if __name__ == "__main__":
app.launch(debug=True, share=True)
|