Spaces:
Runtime error
Runtime error
| import argparse | |
| import re | |
| import os | |
| import streamlit as st | |
| import random | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import tokenizers | |
| #os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| random.seed(None) | |
| first = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.\n\ninformal english:""" | |
| suggested_text_list = [first] | |
| def load_model(model_name): | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| return model, tokenizer | |
| def extend(input_text, num_return_sequences, max_size=20, top_k=50, top_p=0.95, bad_words): | |
| if len(input_text) == 0: | |
| input_text = "" | |
| encoded_prompt = tokenizer.encode( | |
| input_text, add_special_tokens=False, return_tensors="pt") | |
| encoded_prompt = encoded_prompt.to(device) | |
| if encoded_prompt.size()[-1] == 0: | |
| input_ids = None | |
| else: | |
| input_ids = encoded_prompt | |
| bad_words = bad_words.split() | |
| bad_word_ids = [] | |
| for bad_word in bad_words: | |
| bad_word = " " + bad_word | |
| ids = tokenizer(bad_word).input_ids | |
| bad_word_ids.append(ids) | |
| output_sequences = model.generate( | |
| input_ids=input_ids, | |
| max_length=max_size + len(encoded_prompt[0]), | |
| top_k=top_k, | |
| bad_word_ids = bad_word_ids, | |
| top_p=top_p, | |
| do_sample=True, | |
| num_return_sequences=num_return_sequences) | |
| # Remove the batch dimension when returning multiple sequences | |
| if len(output_sequences.shape) > 2: | |
| output_sequences.squeeze_() | |
| generated_sequences = [] | |
| print(output_sequences) | |
| for generated_sequence_idx, generated_sequence in enumerate(output_sequences): | |
| generated_sequence = generated_sequence.tolist() | |
| text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) | |
| print(text) | |
| total_sequence = ( | |
| text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :] | |
| ) | |
| generated_sequences.append(total_sequence) | |
| st.write(total_sequence) | |
| parsed_text = total_sequence.replace("<|startoftext|>", "").replace("\r","").replace("\n\n", "\n") | |
| if len(parsed_text) == 0: | |
| parsed_text = "שגיאה" | |
| return parsed_text | |
| if __name__ == "__main__": | |
| st.title("GPT2 Demo:") | |
| pre_model_path = "BigSalmon/InformalToFormalLincoln15" | |
| model, tokenizer = load_model(pre_model_path) | |
| stop_token = "<|endoftext|>" | |
| new_lines = "\n\n\n" | |
| np.random.seed(None) | |
| random_seed = np.random.randint(10000,size=1) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count() | |
| torch.manual_seed(random_seed) | |
| if n_gpu > 0: | |
| torch.cuda.manual_seed_all(random_seed) | |
| model.to(device) | |
| text_area = st.text_area("Enter the first few words (or leave blank), tap on \"Generate Text\" below. Tapping again will produce a different result.", first) | |
| st.sidebar.subheader("Configurable parameters") | |
| max_len = st.sidebar.slider("Max-Length", 0, 256, 5,help="The maximum length of the sequence to be generated.") | |
| num_return_sequences = st.sidebar.slider("Outputs", 1, 50, 5,help="The number of outputs to be returned.") | |
| top_k = st.sidebar.slider("Top-K", 0, 100, 40, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.") | |
| top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.92, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.") | |
| bad_words = st.text_input("Words You Do Not Want Generated", " core lemon height time ") | |
| if st.button("Generate Text"): | |
| with st.spinner(text="Generating results..."): | |
| st.subheader("Result") | |
| print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}") | |
| if len(text_area.strip()) == 0: | |
| text_area = random.choice(suggested_text_list) | |
| result = extend(input_text=text_area, | |
| num_return_sequences=int(num_return_sequences), | |
| max_size=int(max_len), | |
| top_k=int(top_k), | |
| top_p=float(top_p), | |
| bad_words = bad_words) | |
| print("Done length: " + str(len(result)) + " bytes") | |
| #<div class="rtl" dir="rtl" style="text-align:right;"> | |
| st.markdown(f"{result}", unsafe_allow_html=True) | |
| st.write("\n\nResult length: " + str(len(result)) + " bytes") | |
| print(f"\"{result}\"") |