Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| import json | |
| import io | |
| from constants import ( | |
| SUBMIT_INTRODUCTION, | |
| COLUMN_NAMES, | |
| MODEL_INFO, | |
| ALL_RESULTS, | |
| NEW_DATA_TITLE_TYPE, | |
| SINGLE_DOMAIN_RESULTS, | |
| TABLE_INTRODUCTION, | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| COLUMN_NAMES_HUMAN, | |
| CSV_DIR_HUMAN_DOMAIN_RESULTS, | |
| CSV_DIR_OPEN_DOMAIN_RESULTS, | |
| HUMAN_DOMAIN_RESULTS, | |
| CSV_DIR_SINGLE_DOMAIN_RESULTS, | |
| TABLE_INTRODUCTION_HUMAN, | |
| LEADERBORAD_INTRODUCTION, | |
| OPEN_DOMAIN_RESULTS, | |
| ) | |
| global \ | |
| filter_component, \ | |
| data_component_opendomain, \ | |
| data_component_humandomain, \ | |
| data_component_singledomain | |
| def upload_file(files): | |
| file_paths = [file.name for file in files] | |
| return file_paths | |
| def compute_scores(input_data): | |
| return [ | |
| None, | |
| [ | |
| input_data["total_score"], | |
| input_data["aes_score"], | |
| input_data["motion_amplitude"], | |
| input_data["motion_smoothness"], | |
| input_data["facesim_cur"], | |
| input_data["gme_score"], | |
| input_data["nexus_score"], | |
| input_data["natural_score"], | |
| ], | |
| ] | |
| def compute_scores_human_domain(input_data): | |
| return [ | |
| None, | |
| [ | |
| input_data["total_score"], | |
| input_data["aes_score"], | |
| input_data["motion_amplitude"], | |
| input_data["motion_smoothness"], | |
| input_data["facesim_cur"], | |
| input_data["gme_score"], | |
| input_data["natural_score"], | |
| ], | |
| ] | |
| def add_opendomain_eval( | |
| input_file, | |
| model_name_textbox: str, | |
| revision_name_textbox: str, | |
| venue_type_dropdown: str, | |
| team_name_textbox: str, | |
| model_link: str, | |
| ): | |
| if input_file is None: | |
| return "Error! Empty file!" | |
| else: | |
| selected_model_data = json.load(io.BytesIO(input_file)) | |
| scores = compute_scores(selected_model_data) | |
| input_data = scores[1] | |
| input_data = [float(i) for i in input_data] | |
| csv_data = pd.read_csv(CSV_DIR_OPEN_DOMAIN_RESULTS) | |
| if revision_name_textbox == "": | |
| col = csv_data.shape[0] | |
| model_name = model_name_textbox | |
| name_list = [ | |
| name.split("]")[0][1:] if name.endswith(")") else name | |
| for name in csv_data["Model"] | |
| ] | |
| assert model_name not in name_list | |
| else: | |
| model_name = revision_name_textbox | |
| model_name_list = csv_data["Model"] | |
| name_list = [ | |
| name.split("]")[0][1:] if name.endswith(")") else name | |
| for name in model_name_list | |
| ] | |
| if revision_name_textbox not in name_list: | |
| col = csv_data.shape[0] | |
| else: | |
| col = name_list.index(revision_name_textbox) | |
| if model_link == "": | |
| model_name = model_name # no url | |
| else: | |
| model_name = "[" + model_name + "](" + model_link + ")" | |
| venue = venue_type_dropdown | |
| if team_name_textbox == "": | |
| team = "User Upload" | |
| else: | |
| team = team_name_textbox | |
| new_data = [ | |
| model_name, | |
| venue, | |
| team, | |
| f"{input_data[0] * 100:.2f}%", | |
| f"{input_data[1] * 100:.2f}%", | |
| f"{input_data[2] * 100:.2f}%", | |
| f"{input_data[3] * 100:.2f}%", | |
| f"{input_data[4] * 100:.2f}%", | |
| f"{input_data[5] * 100:.2f}%", | |
| f"{input_data[6] * 100:.2f}%", | |
| f"{input_data[7] * 100:.2f}%", | |
| ] | |
| csv_data.loc[col] = new_data | |
| csv_data.to_csv(CSV_DIR_OPEN_DOMAIN_RESULTS, index=False) | |
| return "Evaluation successfully submitted!" | |
| def add_humandomain_eval( | |
| input_file, | |
| model_name_textbox: str, | |
| revision_name_textbox: str, | |
| venue_type_dropdown: str, | |
| team_name_textbox: str, | |
| model_link: str, | |
| ): | |
| if input_file is None: | |
| return "Error! Empty file!" | |
| else: | |
| selected_model_data = json.load(io.BytesIO(input_file)) | |
| scores = compute_scores_human_domain(selected_model_data) | |
| input_data = scores[1] | |
| input_data = [float(i) for i in input_data] | |
| csv_data = pd.read_csv(CSV_DIR_HUMAN_DOMAIN_RESULTS) | |
| if revision_name_textbox == "": | |
| col = csv_data.shape[0] | |
| model_name = model_name_textbox | |
| name_list = [ | |
| name.split("]")[0][1:] if name.endswith(")") else name | |
| for name in csv_data["Model"] | |
| ] | |
| assert model_name not in name_list | |
| else: | |
| model_name = revision_name_textbox | |
| model_name_list = csv_data["Model"] | |
| name_list = [ | |
| name.split("]")[0][1:] if name.endswith(")") else name | |
| for name in model_name_list | |
| ] | |
| if revision_name_textbox not in name_list: | |
| col = csv_data.shape[0] | |
| else: | |
| col = name_list.index(revision_name_textbox) | |
| if model_link == "": | |
| model_name = model_name # no url | |
| else: | |
| model_name = "[" + model_name + "](" + model_link + ")" | |
| venue = venue_type_dropdown | |
| if team_name_textbox == "": | |
| team = "User Upload" | |
| else: | |
| team = team_name_textbox | |
| new_data = [ | |
| model_name, | |
| venue, | |
| team, | |
| f"{input_data[0] * 100:.2f}%", | |
| f"{input_data[1] * 100:.2f}%", | |
| f"{input_data[2] * 100:.2f}%", | |
| f"{input_data[3] * 100:.2f}%", | |
| f"{input_data[4] * 100:.2f}%", | |
| f"{input_data[5] * 100:.2f}%", | |
| f"{input_data[6] * 100:.2f}%", | |
| ] | |
| csv_data.loc[col] = new_data | |
| csv_data.to_csv(CSV_DIR_HUMAN_DOMAIN_RESULTS, index=False) | |
| return "Evaluation successfully submitted!" | |
| def add_singledomain_eval( | |
| input_file, | |
| model_name_textbox: str, | |
| revision_name_textbox: str, | |
| venue_type_dropdown: str, | |
| team_name_textbox: str, | |
| model_link: str, | |
| ): | |
| if input_file is None: | |
| return "Error! Empty file!" | |
| else: | |
| selected_model_data = json.load(io.BytesIO(input_file)) | |
| scores = compute_scores(selected_model_data) | |
| input_data = scores[1] | |
| input_data = [float(i) for i in input_data] | |
| csv_data = pd.read_csv(CSV_DIR_SINGLE_DOMAIN_RESULTS) | |
| if revision_name_textbox == "": | |
| col = csv_data.shape[0] | |
| model_name = model_name_textbox | |
| name_list = [ | |
| name.split("]")[0][1:] if name.endswith(")") else name | |
| for name in csv_data["Model"] | |
| ] | |
| assert model_name not in name_list | |
| else: | |
| model_name = revision_name_textbox | |
| model_name_list = csv_data["Model"] | |
| name_list = [ | |
| name.split("]")[0][1:] if name.endswith(")") else name | |
| for name in model_name_list | |
| ] | |
| if revision_name_textbox not in name_list: | |
| col = csv_data.shape[0] | |
| else: | |
| col = name_list.index(revision_name_textbox) | |
| if model_link == "": | |
| model_name = model_name # no url | |
| else: | |
| model_name = "[" + model_name + "](" + model_link + ")" | |
| venue = venue_type_dropdown | |
| if team_name_textbox == "": | |
| team = "User Upload" | |
| else: | |
| team = team_name_textbox | |
| new_data = [ | |
| model_name, | |
| venue, | |
| team, | |
| f"{input_data[0] * 100:.2f}%", | |
| f"{input_data[1] * 100:.2f}%", | |
| f"{input_data[2] * 100:.2f}%", | |
| f"{input_data[3] * 100:.2f}%", | |
| f"{input_data[4] * 100:.2f}%", | |
| f"{input_data[5] * 100:.2f}%", | |
| f"{input_data[6] * 100:.2f}%", | |
| f"{input_data[7] * 100:.2f}%", | |
| ] | |
| csv_data.loc[col] = new_data | |
| csv_data.to_csv(CSV_DIR_SINGLE_DOMAIN_RESULTS, index=False) | |
| return "Evaluation successfully submitted!" | |
| def get_all_df_opendomain(): | |
| df = pd.read_csv(CSV_DIR_OPEN_DOMAIN_RESULTS) | |
| df = df.sort_values(by="TotalScoreβ", ascending=False) | |
| return df | |
| def get_baseline_df_opendomain(): | |
| df = pd.read_csv(CSV_DIR_OPEN_DOMAIN_RESULTS) | |
| df = df.sort_values(by="TotalScoreβ", ascending=False) | |
| present_columns = MODEL_INFO + checkbox_group_opendomain.value | |
| df = df[present_columns] | |
| return df | |
| def get_all_df_humandomain(): | |
| df = pd.read_csv(CSV_DIR_HUMAN_DOMAIN_RESULTS) | |
| df = df.sort_values(by="TotalScoreβ", ascending=False) | |
| return df | |
| def get_baseline_df_humandomain(): | |
| df = pd.read_csv(CSV_DIR_HUMAN_DOMAIN_RESULTS) | |
| df = df.sort_values(by="TotalScoreβ", ascending=False) | |
| present_columns = MODEL_INFO + checkbox_group_humandomain.value | |
| df = df[present_columns] | |
| return df | |
| def get_all_df_singledomain(): | |
| df = pd.read_csv(CSV_DIR_SINGLE_DOMAIN_RESULTS) | |
| df = df.sort_values(by="TotalScoreβ", ascending=False) | |
| return df | |
| def get_baseline_df_singledomain(): | |
| df = pd.read_csv(CSV_DIR_SINGLE_DOMAIN_RESULTS) | |
| df = df.sort_values(by="TotalScoreβ", ascending=False) | |
| present_columns = MODEL_INFO + checkbox_group_singledomain.value | |
| df = df[present_columns] | |
| return df | |
| block = gr.Blocks() | |
| with block: | |
| gr.HTML(""" | |
| <div style='display: flex; align-items: center; justify-content: center; text-align: center;'> | |
| <img src="https://www.pnglog.com/6xm07l.png" style='width: 400px; height: auto; margin-right: 10px;' /> | |
| </div> | |
| """) | |
| gr.Markdown(LEADERBORAD_INTRODUCTION) | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| # table Opendomain | |
| with gr.TabItem("π Open-Domain", elem_id="OpenS2V-Nexus-tab-table", id=0): | |
| with gr.Row(): | |
| with gr.Accordion("Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| gr.Markdown(TABLE_INTRODUCTION) | |
| checkbox_group_opendomain = gr.CheckboxGroup( | |
| choices=ALL_RESULTS, | |
| value=OPEN_DOMAIN_RESULTS, | |
| label="Select options", | |
| interactive=True, | |
| ) | |
| data_component_opendomain = gr.components.Dataframe( | |
| value=get_baseline_df_opendomain, | |
| headers=COLUMN_NAMES, | |
| type="pandas", | |
| datatype=NEW_DATA_TITLE_TYPE, | |
| interactive=False, | |
| visible=True, | |
| ) | |
| def on_checkbox_group_change_opendomain(selected_columns): | |
| selected_columns = [ | |
| item for item in ALL_RESULTS if item in selected_columns | |
| ] | |
| present_columns = MODEL_INFO + selected_columns | |
| updated_data = get_baseline_df_opendomain()[present_columns] | |
| updated_data = updated_data.sort_values( | |
| by=present_columns[1], ascending=False | |
| ) | |
| updated_headers = present_columns | |
| update_datatype = [ | |
| NEW_DATA_TITLE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers | |
| ] | |
| filter_component = gr.components.Dataframe( | |
| value=updated_data, | |
| headers=updated_headers, | |
| type="pandas", | |
| datatype=update_datatype, | |
| interactive=False, | |
| visible=True, | |
| ) | |
| return filter_component | |
| checkbox_group_opendomain.change( | |
| fn=on_checkbox_group_change_opendomain, | |
| inputs=checkbox_group_opendomain, | |
| outputs=data_component_opendomain, | |
| ) | |
| # table HumanDomain | |
| with gr.TabItem("π Human-Domain", elem_id="OpenS2V-Nexus-tab-table", id=1): | |
| with gr.Row(): | |
| with gr.Accordion("Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| gr.Markdown(TABLE_INTRODUCTION_HUMAN) | |
| checkbox_group_humandomain = gr.CheckboxGroup( | |
| choices=HUMAN_DOMAIN_RESULTS, | |
| value=HUMAN_DOMAIN_RESULTS, | |
| label="Select options", | |
| interactive=True, | |
| ) | |
| data_component_humandomain = gr.components.Dataframe( | |
| value=get_baseline_df_humandomain, | |
| headers=COLUMN_NAMES_HUMAN, | |
| type="pandas", | |
| datatype=NEW_DATA_TITLE_TYPE, | |
| interactive=False, | |
| visible=True, | |
| ) | |
| def on_checkbox_group_change_humandomain(selected_columns): | |
| selected_columns = [ | |
| item for item in ALL_RESULTS if item in selected_columns | |
| ] | |
| present_columns = MODEL_INFO + selected_columns | |
| updated_data = get_baseline_df_humandomain()[present_columns] | |
| updated_data = updated_data.sort_values( | |
| by=present_columns[1], ascending=False | |
| ) | |
| updated_headers = present_columns | |
| update_datatype = [ | |
| NEW_DATA_TITLE_TYPE[COLUMN_NAMES_HUMAN.index(x)] | |
| for x in updated_headers | |
| ] | |
| filter_component = gr.components.Dataframe( | |
| value=updated_data, | |
| headers=updated_headers, | |
| type="pandas", | |
| datatype=update_datatype, | |
| interactive=False, | |
| visible=True, | |
| ) | |
| return filter_component | |
| checkbox_group_humandomain.change( | |
| fn=on_checkbox_group_change_humandomain, | |
| inputs=checkbox_group_humandomain, | |
| outputs=data_component_humandomain, | |
| ) | |
| # table SingleDomain | |
| with gr.TabItem("π Single-Domain", elem_id="OpenS2V-Nexus-tab-table", id=2): | |
| with gr.Row(): | |
| with gr.Accordion("Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| gr.Markdown(TABLE_INTRODUCTION) | |
| checkbox_group_singledomain = gr.CheckboxGroup( | |
| choices=ALL_RESULTS, | |
| value=SINGLE_DOMAIN_RESULTS, | |
| label="Select options", | |
| interactive=True, | |
| ) | |
| data_component_singledomain = gr.components.Dataframe( | |
| value=get_baseline_df_singledomain, | |
| headers=COLUMN_NAMES, | |
| type="pandas", | |
| datatype=NEW_DATA_TITLE_TYPE, | |
| interactive=False, | |
| visible=True, | |
| ) | |
| def on_checkbox_group_change_singledomain(selected_columns): | |
| selected_columns = [ | |
| item for item in ALL_RESULTS if item in selected_columns | |
| ] | |
| present_columns = MODEL_INFO + selected_columns | |
| updated_data = get_baseline_df_singledomain()[present_columns] | |
| updated_data = updated_data.sort_values( | |
| by=present_columns[1], ascending=False | |
| ) | |
| updated_headers = present_columns | |
| update_datatype = [ | |
| NEW_DATA_TITLE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers | |
| ] | |
| filter_component = gr.components.Dataframe( | |
| value=updated_data, | |
| headers=updated_headers, | |
| type="pandas", | |
| datatype=update_datatype, | |
| interactive=False, | |
| visible=True, | |
| ) | |
| return filter_component | |
| checkbox_group_singledomain.change( | |
| fn=on_checkbox_group_change_singledomain, | |
| inputs=checkbox_group_singledomain, | |
| outputs=data_component_singledomain, | |
| ) | |
| # table Submission | |
| with gr.TabItem("π Submit here! ", elem_id="seed-benchmark-tab-table", id=4): | |
| with gr.Row(): | |
| gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") | |
| with gr.Row(): | |
| gr.Markdown( | |
| "# βοΈβ¨ Submit your result here!", elem_classes="markdown-text" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox( | |
| label="Model name", placeholder="ConsisID" | |
| ) | |
| revision_name_textbox = gr.Textbox( | |
| label="Revision Model Name (Optinal)", placeholder="ConsisID" | |
| ) | |
| venue_type_dropdown = gr.Dropdown( | |
| label="Venue Type", | |
| choices=["Open-Source", "Close-Source"], | |
| value="Open-Source", | |
| ) | |
| team_name_textbox = gr.Textbox( | |
| label="Your Team Name (If left blank, it will be user upload))", placeholder="User Upload" | |
| ) | |
| model_link = gr.Textbox( | |
| label="Model Link", | |
| placeholder="https://github.com/PKU-YuanGroup/ConsisID", | |
| ) | |
| with gr.Column(): | |
| input_file = gr.File(label="Click to Upload a json File", type="binary") | |
| submit_button_opendomain = gr.Button("Submit Result (Open-Domain)") | |
| submit_button_humandomain = gr.Button("Submit Result (Human-Domain)") | |
| submit_button_singledomain = gr.Button("Submit Result (Single-Domain)") | |
| submission_result = gr.Markdown() | |
| submit_button_opendomain.click( | |
| add_opendomain_eval, | |
| inputs=[ | |
| input_file, | |
| model_name_textbox, | |
| revision_name_textbox, | |
| venue_type_dropdown, | |
| team_name_textbox, | |
| model_link, | |
| ], | |
| outputs=submission_result, | |
| ) | |
| submit_button_humandomain.click( | |
| add_humandomain_eval, | |
| inputs=[ | |
| input_file, | |
| model_name_textbox, | |
| revision_name_textbox, | |
| venue_type_dropdown, | |
| team_name_textbox, | |
| model_link, | |
| ], | |
| outputs=submission_result, | |
| ) | |
| submit_button_singledomain.click( | |
| add_singledomain_eval, | |
| inputs=[ | |
| input_file, | |
| model_name_textbox, | |
| revision_name_textbox, | |
| venue_type_dropdown, | |
| team_name_textbox, | |
| model_link, | |
| ], | |
| outputs=submission_result, | |
| ) | |
| with gr.Row(): | |
| data_run = gr.Button("Refresh") | |
| data_run.click(get_baseline_df_opendomain, outputs=data_component_opendomain) | |
| data_run.click(get_baseline_df_humandomain, outputs=data_component_humandomain) | |
| data_run.click( | |
| get_baseline_df_singledomain, outputs=data_component_singledomain | |
| ) | |
| block.launch() | |