Spaces:
Runtime error
Runtime error
| # Copyright 2023 Haotian Liu | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ------------------------------------------------------------------------ | |
| # Modified from LLaVA (https://github.com/haotian-liu/LLaVA) and MoE-LLaVA(https://github.com/PKU-YuanGroup/MoE-LLaVA) | |
| # Copyright 2024 Jiachen Li | |
| # ------------------------------------------------------------------------ | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import CrossEntropyLoss | |
| from transformers import AutoConfig, AutoModelForCausalLM, \ | |
| MixtralConfig, MixtralModel, MixtralForCausalLM | |
| from transformers.modeling_outputs import CausalLMOutputWithPast | |
| from transformers.generation.utils import GenerateOutput | |
| from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM | |
| from .smoe_mixtral_helper import SMoECausalLMOutputWithPast, MixtralDecoderLayerMOEBlock_forward | |
| class LlavaMixtralConfig(MixtralConfig): | |
| model_type = "llava_mixtral" | |
| class LlavaMixtralModel(LlavaMetaModel, MixtralModel): | |
| config_class = LlavaMixtralConfig | |
| def __init__(self, config: MixtralConfig): | |
| super(LlavaMixtralModel, self).__init__(config) | |
| class LlavaMixtralForCausalLM(MixtralForCausalLM, LlavaMetaForCausalLM): | |
| config_class = LlavaMixtralConfig | |
| def __init__(self, config): | |
| super(MixtralForCausalLM, self).__init__(config) | |
| self.model = LlavaMixtralModel(config) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_model(self): | |
| return self.model | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| images: Optional[torch.FloatTensor] = None, | |
| image_sizes: Optional[List[List[int]]] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| if inputs_embeds is None: | |
| ( | |
| input_ids, | |
| position_ids, | |
| attention_mask, | |
| past_key_values, | |
| inputs_embeds, | |
| labels, | |
| clip_balance_loss, | |
| clip_router_z_loss, | |
| mlp_balance_loss, | |
| mlp_router_z_loss | |
| ) = self.prepare_inputs_labels_for_multimodal( | |
| input_ids, | |
| position_ids, | |
| attention_mask, | |
| past_key_values, | |
| labels, | |
| images, | |
| image_sizes | |
| ) | |
| output_router_logits = True | |
| ### We set output_router_logits to True and squeeze bzloss into outputs.router_logits. This hack implementation needs to be fixed | |
| outputs = self.model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| output_router_logits=output_router_logits, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = outputs[0] | |
| logits = self.lm_head(hidden_states) | |
| logits = logits.float() | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
| shift_labels = shift_labels.view(-1) | |
| # Enable model parallelism | |
| shift_labels = shift_labels.to(shift_logits.device) | |
| loss = loss_fct(shift_logits, shift_labels) | |
| b_loss = None | |
| z_loss = None | |
| if self.config.training: | |
| if self.config.mlp_smoe or self.config.clip_smoe: | |
| if self.config.local_rank == 0: | |
| print('language loss: ', loss.item()) | |
| if self.config.mlp_smoe: | |
| mlp_balance_loss = mlp_balance_loss.sum(dim=-1).mean() | |
| mlp_balance_loss = self.config.balance_loss_coef * mlp_balance_loss | |
| loss += mlp_balance_loss | |
| mlp_router_z_loss = mlp_router_z_loss.sum(dim=-1).mean() | |
| mlp_router_z_loss = self.config.router_z_loss_coef * mlp_router_z_loss | |
| loss += mlp_router_z_loss | |
| if self.config.local_rank == 0: | |
| print('mlp balance loss: ', mlp_balance_loss.item(), 'mlp router z loss: ', mlp_router_z_loss.item()) | |
| if self.config.clip_smoe: | |
| clip_balance_loss = clip_balance_loss.sum(dim=-1).mean() | |
| clip_balance_loss = self.config.balance_loss_coef * clip_balance_loss | |
| loss += clip_balance_loss | |
| clip_router_z_loss = clip_router_z_loss.sum(dim=-1).mean() | |
| clip_router_z_loss = self.config.router_z_loss_coef * clip_router_z_loss | |
| loss += clip_router_z_loss | |
| if self.config.local_rank == 0: | |
| print('clip balance loss: ', clip_balance_loss.item(), 'clip router z loss: ', clip_router_z_loss.item()) | |
| balance_loss = [loss_pair[0] for loss_pair in outputs.router_logits] | |
| b_loss = sum(balance_loss) / len(balance_loss) | |
| b_loss = self.config.balance_loss_coef * b_loss | |
| loss += b_loss | |
| router_z_loss = [loss_pair[1] for loss_pair in outputs.router_logits] | |
| z_loss = sum(router_z_loss) / len(balance_loss) | |
| z_loss = self.config.router_z_loss_coef * z_loss | |
| loss += z_loss | |
| if self.config.local_rank == 0: | |
| print('llm balance loss: ', b_loss.item(), 'llm router z loss: ', z_loss.item()) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return SMoECausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def initialize_smoe_modules(self, model_args): | |
| for m in self.model.layers: | |
| m.block_sparse_moe.forward = MixtralDecoderLayerMOEBlock_forward(m.block_sparse_moe) | |
| def generate( | |
| self, | |
| inputs: Optional[torch.Tensor] = None, | |
| images: Optional[torch.Tensor] = None, | |
| image_sizes: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> Union[GenerateOutput, torch.LongTensor]: | |
| position_ids = kwargs.pop("position_ids", None) | |
| attention_mask = kwargs.pop("attention_mask", None) | |
| if "inputs_embeds" in kwargs: | |
| raise NotImplementedError("`inputs_embeds` is not supported") | |
| if images is not None: | |
| ( | |
| inputs, | |
| position_ids, | |
| attention_mask, | |
| _, | |
| inputs_embeds, | |
| _, | |
| _, | |
| _, | |
| _, | |
| _ | |
| ) = self.prepare_inputs_labels_for_multimodal( | |
| inputs, | |
| position_ids, | |
| attention_mask, | |
| None, | |
| None, | |
| images, | |
| image_sizes=image_sizes | |
| ) | |
| else: | |
| inputs_embeds = self.get_model().embed_tokens(inputs) | |
| return super().generate( | |
| position_ids=position_ids, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| **kwargs | |
| ) | |
| def prepare_inputs_for_generation(self, input_ids, past_key_values=None, | |
| inputs_embeds=None, **kwargs): | |
| images = kwargs.pop("images", None) | |
| image_sizes = kwargs.pop("image_sizes", None) | |
| inputs = super().prepare_inputs_for_generation( | |
| input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs | |
| ) | |
| if images is not None: | |
| inputs['images'] = images | |
| if image_sizes is not None: | |
| inputs['image_sizes'] = image_sizes | |
| return inputs | |
| AutoConfig.register("llava_mixtral", LlavaMixtralConfig) | |
| AutoModelForCausalLM.register(LlavaMixtralConfig, LlavaMixtralForCausalLM) | |