D2F-eval / eval_dream_d2f_vllm.py
Bailan-Alex's picture
Upload folder using huggingface_hub
2f3e169 verified
import logging
import gc
import time
import json
from datetime import timedelta
from typing import List, Optional, Tuple, Type, TypeVar, Union
import torch
import torch.nn.functional as F
import torch.distributions as dists
import transformers
from accelerate import (
Accelerator,
InitProcessGroupKwargs,
)
from datasets import Dataset
from packaging import version
from tqdm import tqdm
from peft import PeftConfig, PeftModel
import numpy as np
from lm_eval import utils
from lm_eval.api.instance import Instance
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model
from lm_eval.models.utils import get_dtype
from lm_eval.__main__ import cli_evaluate
eval_logger = logging.getLogger(__name__)
T = TypeVar("T", bound="LM")
import random
def set_seed(seed):
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def shift_logits(logits):
shifted_logits = torch.zeros_like(logits)
shifted_logits[:, 1:, :] = logits[:, :-1, :]
shifted_logits[:, 0, :] = 1.0
return shifted_logits
def create_full_block_attention_mask(prompt_length, max_length, block_size, device=None, dtype=None):
"""
Creates a complete attention mask for the entire sequence with block-based causal attention.
Args:
prompt_length: Length of the prompt (first irregular block)
max_length: Maximum total sequence length
block_size: Size of each regular block
device: Device to create tensor on
dtype: Data type for the attention mask
Returns:
attention_mask: Tensor of shape [1, 1, max_length, max_length]
"""
# Use the provided dtype or default to bfloat16
if dtype is None:
dtype = torch.bfloat16
# Initialize mask with -inf (no attention)
attention_mask = torch.full((1, 1, max_length, max_length), -torch.inf, device=device, dtype=dtype)
# Block 0: Prompt (can see itself)
attention_mask[:, :, :prompt_length, :prompt_length] = 0
# Calculate the number of regular blocks after prompt
remaining_length = max_length - prompt_length
num_blocks = (remaining_length + block_size - 1) // block_size
# Process each regular block
for b in range(num_blocks):
block_start = prompt_length + b * block_size
block_end = min(prompt_length + (b + 1) * block_size, max_length)
# Current block can see the prompt
attention_mask[:, :, block_start:block_end, :prompt_length] = 0
# Current block can see all previous regular blocks
for prev_b in range(b):
prev_start = prompt_length + prev_b * block_size
prev_end = min(prompt_length + (prev_b + 1) * block_size, max_length)
attention_mask[:, :, block_start:block_end, prev_start:prev_end] = 0
# Current block can see itself (full attention within block)
attention_mask[:, :, block_start:block_end, block_start:block_end] = 0
return attention_mask
def extract_attention_mask(full_mask, start_pos, input_length, cache_length):
"""
Extract the relevant portion of attention mask for current forward pass.
Args:
full_mask: Complete attention mask [1, 1, max_length, max_length]
start_pos: Starting position in the full sequence
input_length: Length of current input sequence
cache_length: Length of cached sequence
Returns:
attention_mask: Extracted mask [1, 1, input_length, cache_length + input_length]
"""
end_pos = start_pos + input_length
total_length = cache_length + input_length
# Extract the relevant rows (current input positions)
# and columns (cache + current input positions)
extracted_mask = torch.full((1, 1, input_length, total_length), -torch.inf,
device=full_mask.device, dtype=full_mask.dtype)
# Copy cache columns (0 to cache_length in the extracted mask corresponds to 0 to cache_length in full mask)
extracted_mask[:, :, :, :cache_length] = full_mask[:, :, start_pos:end_pos, :cache_length]
# Copy current input columns
extracted_mask[:, :, :, cache_length:] = full_mask[:, :, start_pos:end_pos, start_pos:end_pos]
return extracted_mask
def build_custom_float_attention_mask(input_ids, prompt_length, block_size, device=None, dtype=None):
B, seq_len = input_ids.shape
# Use the provided dtype or default to float32
if dtype is None:
dtype = torch.float32
# Initialize to all -inf
attn_mask = torch.full((B, 1, seq_len, seq_len), float('-inf'), dtype=dtype, device=device)
# 1. Prompt part: each token can attend to the entire prompt
for i in range(B):
attn_mask[i, :, :, :prompt_length[i]] = 0.0 # Allow all tokens to see the prompt
# 2. Block division: divide into blocks starting from prompt_length
num_blocks = (seq_len - prompt_length[i] + block_size - 1) // block_size
for b in range(num_blocks):
block_start = prompt_length[i] + b * block_size
block_end = min(block_start + block_size, seq_len)
# Full attention within the block
attn_mask[i, :, block_start:block_end, block_start:block_end] = 0.0
# Causal attention between blocks (can only see previous blocks)
for prev_b in range(b):
prev_start = prompt_length[i] + prev_b * block_size
prev_end = min(prev_start + block_size, seq_len)
# Current block can see previous blocks
attn_mask[i, :, block_start:block_end, prev_start:prev_end] = 0.0
return attn_mask
def top_p_logits(logits, top_p=None):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
return logits
def top_k_logits(logits, top_k=None):
top_k = min(top_k, logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
return logits
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
if temperature > 0:
logits = logits / temperature
if top_p is not None and top_p < 1:
logits = top_p_logits(logits, top_p)
if top_k is not None:
logits = top_k_logits(logits, top_k)
probs = torch.softmax(logits, dim=-1)
if temperature > 0:
try:
x0 = dists.Categorical(probs=probs).sample()
initial_confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
except:
initial_confidence, x0 = probs.max(dim=-1)
else:
initial_confidence, x0 = probs.max(dim=-1)
# Save initial confidence
confidence = initial_confidence.clone()
if margin_confidence:
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
# Extract top1 and top2 probabilities
top1_probs = sorted_probs[:, 0]
top2_probs = sorted_probs[:, 1]
# Calculate confidence as top1 - top2
confidence = top1_probs - top2_probs
if neg_entropy:
epsilon = 1e-10
log_probs = torch.log(probs + epsilon)
confidence = torch.sum(probs * log_probs, dim=-1)
return confidence, x0, initial_confidence
@register_model("dream_lora")
class DreamLoRA(LM):
def __init__(
self,
pretrained: Union[str, transformers.PreTrainedModel],
lora_path: str,
batch_size: Optional[Union[int, str]] = 1,
device: Optional[str] = "cuda",
dtype: Optional[Union[str, torch.dtype]] = "auto",
max_new_tokens: Optional[int] = 128,
max_length: Optional[int] = 2048, # Updated to match example code
add_bos_token: Optional[bool] = False,
nll_type: Optional[str] = "mc",
log_type: Optional[str] = "ftb",
mc_num: Optional[int] = 128,
classifier_free_guidance: Optional[float] = 1.0,
sampling_eps: Optional[float] = 1e-3,
diffusion_steps: Optional[int] = 128,
trust_remote_code: Optional[bool] = True,
parallelize: Optional[bool] = False,
autogptq: Optional[Union[bool, str]] = False,
temperature: Optional[float] = 0.2, # Updated default
top_p: Optional[float] = None, # Updated default
top_k: Optional[float] = None,
alg: Optional[str] = "entropy",
alg_temp: Optional[float] = 0.0,
escape_until: Optional[bool] = False,
block_size: Optional[int] = 4, # Updated to match example code
mask_token_id: Optional[int] = 151666, # Added mask_token_id parameter
block_add_threshold: Optional[float] = 0.5, # Added block_add_threshold parameter
decoded_token_threshold: Optional[int] = 0.9, # Added decoded_token_threshold parameter
skip_threshold: Optional[float] = 1.0, # Added skip_threshold parameter
sampling_strategy: Optional[str] = "default", # Added sampling_strategy parameter
save_dir: Optional[str] = None,
**kwargs,
) -> None:
super().__init__()
# prepare for parallelism
assert isinstance(device, str)
assert isinstance(pretrained, str)
assert isinstance(batch_size, (int, str))
gpus = torch.cuda.device_count()
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
if accelerator.num_processes > 1:
self.accelerator = accelerator
if "npu" in accelerator.device.type:
gpus = torch.npu.device_count()
# using one process with no model parallelism
if not (parallelize or accelerator.num_processes > 1):
# use user-passed device
device_list = set(
["cuda", "cpu"]
+ [f"cuda:{i}" for i in range(gpus)]
+ ["mps", "mps:0"]
+ [f"npu:{i}" for i in range(gpus)]
)
if device and device in device_list:
self._device = torch.device(device)
eval_logger.info(f"Using device '{device}'")
if device in ("mps", "mps:0") and version.parse(
torch.__version__
) < version.parse("2.1"):
raise RuntimeError(
f"mps requires torch >= 2.1. You have {torch.__version__}"
)
else:
eval_logger.info("Device not specified")
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
self._device = (
torch.device("cuda")
if torch.cuda.is_available()
else torch.device("cpu")
)
else: # Parallelism managed by accelerate
if device != "cuda":
eval_logger.info(
f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
)
# TODO: include in warning that `load_in_8bit` etc. affect this too
self._device = (
self.accelerator.device
if hasattr(self, "accelerator")
else torch.device(device)
)
self.batch_size_per_gpu = batch_size
if isinstance(batch_size, str):
self.batch_size_per_gpu = int(batch_size)
# Save LoRA path and block_size
self.lora_path = lora_path
self.block_size = block_size
self.block_add_threshold = block_add_threshold # New block_add_threshold attribute
self.skip_threshold = skip_threshold # New skip_threshold attribute
self.sampling_strategy = sampling_strategy # Save sampling strategy parameter
self.decoded_token_threshold = decoded_token_threshold # New decoded_token_threshold attribute
self.save_dir = save_dir
# Add metric tracking
self.total_forward_passes = 0
self.total_generated_tokens = 0
self.total_prompts = 0
# Add time and token statistics
self.total_generation_time = 0.0
self.total_block_tokens = 0 # Number of blocks * block_size
self.total_actual_tokens = 0 # Actual generated tokens (excluding EOS)
self.total_non_eos_tokens = 0 # Total non-EOS tokens in the entire sequence
self.all_generation_times = []
self.all_block_tokens = []
self.all_actual_tokens = []
self.all_non_eos_tokens = []
# Save target_dtype for later use
self.target_dtype = get_dtype(dtype)
# if isinstance(pretrained, str):
# if gpus >= 1 or str(self.device) == "mps":
# # TODO: can remove this whole snippet except in the mps case, perhaps?
# if not (parallelize or autogptq or hasattr(self, "accelerator")):
# # place model onto device requested manually,
# # if not using HF Accelerate or device_map
# # or any other option that preloads model onto device
# try:
# self.model.to(self.device)
# except ValueError:
# eval_logger.debug(
# "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
# )
# # multigpu data-parallel support when launched with accelerate
# if gpus > 1:
# if accelerator.num_processes > 1:
# if parallelize:
# eval_logger.warning(
# "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
# )
# elif gpus > accelerator.num_processes:
# eval_logger.warning(
# "WARNING: The number of total system GPUs does not match the number of spawned processes. "
# "If you would like to use data parallelism, please launch the script "
# "with 'accelerate launch *script*'. "
# f"Current run will proceed with {accelerator.num_processes} devices."
# )
# if self.accelerator.is_local_main_process:
# eval_logger.info(
# f"Using {gpus} devices with data parallelism"
# )
# self._device = torch.device(f"{accelerator.device}")
# self.accelerator = accelerator
# self._rank = self.accelerator.local_process_index
# self._world_size = self.accelerator.num_processes
# else:
# # if we aren't launching via accelerate, ditch
# self._rank = 0
# self._world_size = 1
# else:
# # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
# eval_logger.warning(
# "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
# )
# self._rank = 0
# self._world_size = 1
self.max_length = max_length
self.add_bos_token = add_bos_token
# generation params
self.max_new_tokens = max_new_tokens
self.diffusion_steps = diffusion_steps
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
self.alg = alg
self.alg_temp = alg_temp
self.escape_until = escape_until
self.block_size = block_size
self.mask_token_id = mask_token_id
# loglikelihood params
self.nll_type = nll_type
self.log_type = log_type
self.mc_num = mc_num
self.classifier_free_guidance = classifier_free_guidance
self.sampling_eps = sampling_eps
self._create_model_and_tokenizer(pretrained, dtype, trust_remote_code)
@property
def batch_size(self):
return self.batch_size_per_gpu
@property
def device(self):
return self._device
@property
def rank(self):
return self._rank
@property
def world_size(self):
return self._world_size
def _create_model_and_tokenizer(self, pretrained, dtype, trust_remote_code):
from d2f_vllm import LLM, SamplingParams
self.LLM = LLM(
pretrained,
lora_path=self.lora_path,
use_lora=True,
model_name="dream",
model_type="diffusion_lm",
enforce_eager=True,
tensor_parallel_size=1,
gpu_memory_utilization=0.60,
max_num_batched_tokens=2048,
max_num_seqs=20,
max_model_len=1024,
accept_threshold=self.skip_threshold,
complete_threshold=self.decoded_token_threshold,
add_new_block_threshold=1-self.block_add_threshold,
kv_cache_layout="unified"
)
self.tokenizer = self.LLM.tokenizer
self.sampling_params = SamplingParams(temperature=self.temperature, max_tokens=self.max_new_tokens)
def tok_decode(self, tokens, skip_special_tokens=True):
return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
def tok_encode(self, text, add_special_tokens=True):
return self.tokenizer(
text, return_tensors="pt", add_special_tokens=add_special_tokens
).input_ids
@classmethod
def create_from_arg_string(
cls: Type[T], arg_string: str, additional_config: Optional[dict] = None
) -> T:
"""
Creates an instance of the LM class using the given argument string and additional config.
Parameters:
- arg_string: A string containing arguments in the format key1=value1,key2=value2.
- additional_config: Optional dictionary containing additional configuration parameters.
Returns:
- Instance of the LM class.
"""
additional_config = {} if additional_config is None else additional_config
args = utils.simple_parse_args_string(arg_string)
args2 = {k: v for k, v in additional_config.items() if v is not None}
return cls(**args, **args2)
def apply_chat_template(
self, chat_history, add_generation_prompt: bool = True
) -> str:
"""
Method to apply a chat template to a list of chat history between user and model.
"""
chat_templated = self.tokenizer.apply_chat_template(
chat_history,
tokenize=False,
add_generation_prompt=add_generation_prompt,
continue_final_message=not add_generation_prompt,
)
return chat_templated
@property
def tokenizer_name(self) -> str:
return self.tokenizer.name_or_path.replace("/", "__")
def generate_until(self, requests: List[Instance], disable_tqdm: bool = False):
res = []
# Initialize statistics counters
if not hasattr(self, 'total_generated_tokens'):
self.total_generated_tokens = 0
num_tokens = 0
num_nfe = 0 # Number of Forward Evaluations
prompts, gen_args = [], []
print("Preparing prompts...")
for req in tqdm(requests):
prompts.append(self.tokenizer.bos_token + req.arguments[0])
gen_args.append(req.arguments[1])
start_time = time.time()
outputs = self.LLM.generate(prompts, self.sampling_params)
end_time = time.time()
total_time = end_time - start_time
# Accumulate statistics
res = [output['text'] for output in outputs]
num_tokens = sum(len(output['token_ids']) for output in outputs)
num_nfe = sum(output['n_diff_steps'] for output in outputs)
# Save final statistics
final_stats = {
'processed_samples': len(requests),
'total_samples': len(requests),
'total_tokens': num_tokens,
'total_nfe': num_nfe,
'total_time': total_time,
'tokens_per_second': num_tokens / total_time if total_time > 0 else 0,
'nfe_per_token': num_nfe / num_tokens if num_tokens > 0 else 0,
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S')
}
# Save statistics to file
if self.save_dir is not None:
import os
os.makedirs(self.save_dir, exist_ok=True)
# Save response results
save_path = os.path.join(self.save_dir, f'rank_{self.rank}_responses.jsonl')
with open(save_path, 'w', encoding='utf-8') as f:
for r in res:
f.write(json.dumps(r, ensure_ascii=False) + '\n')
# Save statistics results
stats_path = os.path.join(self.save_dir, f'rank_{self.rank}_final_stats.json')
with open(stats_path, 'w', encoding='utf-8') as f:
json.dump(final_stats, f, ensure_ascii=False, indent=2)
# Print final statistics
print("\n" + "="*60)
print("=== Final Statistics ===")
print("="*60)
print(f"Processed Samples: {final_stats['processed_samples']}")
print(f"Total Samples: {final_stats['total_samples']}")
print(f"Total Tokens: {final_stats['total_tokens']}")
print(f"Total NFE: {final_stats['total_nfe']}")
print(f"Total Time: {final_stats['total_time']:.4f}s")
print(f"Tokens/Second: {final_stats['tokens_per_second']:.2f}")
print(f"NFE/Token: {final_stats['nfe_per_token']:.4f}")
print(f"Completion Time: {final_stats['timestamp']}")
print("="*60)
return res
def _forward_process(self, batch):
b, l = batch.shape
# sample from U[0, 1] following https://arxiv.org/pdf/2107.00630 I.1
u0 = torch.rand(1, device=batch.device, dtype=torch.float32)
indices = torch.arange(b, device=batch.device).float()
t = (u0 + indices / b) % 1
p_mask = (1 - self.sampling_eps) * t + self.sampling_eps
p_mask = p_mask[:, None].repeat(1, l)
mask_indices = torch.rand((b, l), device=batch.device) < p_mask
# always unmask bos and eos
mask_indices[:, 0] = False
mask_indices[:, -1] = False
noisy_batch = torch.where(mask_indices, self.mask_token_id, batch)
return noisy_batch, p_mask
@torch.no_grad()
def get_logits(self, batch, prompt_index):
'''
prompt_index : 1D bool tensor, length=batch.shape[1]
'''
if self.classifier_free_guidance > 1.:
assert len(prompt_index) == batch.shape[1]
prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1)
un_batch = batch.clone()
un_batch[prompt_index] = self.mask_token_id
batch = torch.cat([batch, un_batch])
input = batch
with torch.amp.autocast('cuda', dtype=torch.bfloat16):
logits = self.model(input).logits
# since bos always unmask, the first logits will not be used
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
if self.classifier_free_guidance > 1.:
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + self.cfg * (logits - un_logits)
return logits[:, :batch.shape[1]]
@torch.no_grad()
def _eval_target_nll_mc(self, prefix, target):
if prefix is None:
seq = target[None, :]
else:
seq = torch.concatenate([prefix, target])[None, :]
seq = seq.repeat((self.batch_size, 1)).to(self.device)
if self.log_type == 'ftb':
prompt_index = torch.arange(seq.shape[1], device=self.device) < len(prefix)
else:
prompt_index = torch.arange(seq.shape[1], device=self.device) >= len(prefix)
loss_acc = []
for _ in range(max(self.mc_num // self.batch_size, 1)):
perturbed_seq = seq.clone()
# eval_logger.info("before noising")
perturbed_seq_, p_mask = self._forward_process(seq)
# eval_logger.info("end noising")
if self.log_type == 'ftb':
perturbed_seq[:, -len(target):] = perturbed_seq_[:, -len(target):]
elif self.log_type == 'btf':
perturbed_seq[:, :len(prefix)] = perturbed_seq_[:, :len(prefix)]
elif self.log_type == 'union':
perturbed_seq = perturbed_seq_
else:
raise NotImplementedError(self.log_type)
mask_indices = perturbed_seq == self.mask_token_id
logits = self.get_logits(perturbed_seq, prompt_index)
loss = F.cross_entropy(logits[mask_indices], seq[mask_indices], reduction='none') / p_mask[mask_indices]
loss = loss.sum() / self.batch_size
loss_acc.append(loss.item())
return sum(loss_acc) / len(loss_acc)
@torch.no_grad()
def _eval_target_nll_ar(self, prefix, target):
prefix, target = prefix.unsqueeze(0), target.unsqueeze(0) # 1*l1, 1*l2
assert self.log_type in ['ftb', 'btf']
assert self.nll_type in ['ar_ftb', 'ar_btf']
if self.log_type == 'ftb':
prompt_index = torch.arange(prefix.shape[1] + target.shape[1], device=self.device) < prefix.shape[1]
else:
prompt_index = torch.arange(prefix.shape[1] + target.shape[1], device=self.device) >= prefix.shape[1]
if self.log_type == 'ftb':
perturbed_ = target.repeat(target.shape[1], 1).clone().contiguous() # l2*l2
else:
perturbed_ = prefix.repeat(prefix.shape[1], 1).clone().contiguous() # l1*l1
mask_index = torch.ones((perturbed_.shape[1], perturbed_.shape[1]), dtype=torch.bool)
if self.nll_type == 'ar_ftb':
mask_index = torch.triu(mask_index)
else:
mask_index = torch.tril(mask_index)
perturbed_[mask_index] = self.mask_token_id
if self.log_type == 'ftb':
perturbed_seq = torch.cat([prefix.repeat(perturbed_.shape[0], 1), perturbed_], dim=-1)
else:
perturbed_seq = torch.cat([perturbed_, target.repeat(perturbed_.shape[0], 1)], dim=-1)
logits_ = []
num = len(perturbed_seq) // self.batch_size if len(perturbed_seq) % self.batch_size == 0 else len(perturbed_seq) // self.batch_size + 1
for i in range(num):
end = (i + 1) * self.batch_size if (i + 1) * self.batch_size < len(perturbed_seq) else len(perturbed_seq)
perturbed_seq_ = perturbed_seq[i * self.batch_size: end]
perturbed_seq_ = perturbed_seq_.to(self.device)
if len(perturbed_seq_.shape) == 1:
perturbed_seq_ = perturbed_seq_.unsqueeze(0)
logits = self.get_logits(perturbed_seq_, prompt_index)
logits_.append(logits.cpu())
logits = torch.cat(logits_, dim=0)
temp_index = torch.ones((perturbed_.shape[1], perturbed_.shape[1]), dtype=torch.bool)
if self.nll_type == 'ar_ftb':
temp_index = torch.triu(temp_index, diagonal=1)
else:
temp_index = torch.tril(temp_index, diagonal=-1)
mask_index[temp_index] = False
if self.log_type == 'ftb':
logits_index = torch.cat([torch.zeros((perturbed_.shape[1], prefix.shape[1]), dtype=torch.bool), mask_index], dim=-1)
else:
logits_index = torch.cat([mask_index, torch.zeros((perturbed_.shape[1], target.shape[1]), dtype=torch.bool)], dim=-1)
if self.log_type == 'ftb':
loss = F.cross_entropy(logits[logits_index], target[0], reduction='sum').cpu().item()
else:
loss = F.cross_entropy(logits[logits_index], prefix[0], reduction='sum').cpu().item()
return loss
def _encode_pair(self, context, continuation):
if self.add_bos_token:
context = self.tokenizer.bos_token + context
n_spaces = len(context) - len(context.rstrip())
if n_spaces > 0:
continuation = context[-n_spaces:] + continuation
context = context[:-n_spaces]
whole_enc = self.tokenizer.encode(context + continuation) + [self.tokenizer.eos_token_id]
context_enc = self.tokenizer.encode(context)
context_enc_len = len(context_enc)
continuation_enc = whole_enc[context_enc_len:]
# by default truncate on the left
cutoff_length = max(len(whole_enc) - self.max_length, 0)
if cutoff_length > 0:
eval_logger.warning(f"Text length {len(whole_enc)} is larger than {self.max_length}, cutoff on the left side")
context_remain = context_enc_len-cutoff_length
if context_remain > 0:
context_enc = context_enc[-context_remain:]
else:
eval_logger.warning(f"All context (prompt) is truncated.")
context_enc = ""
continuation_enc = whole_enc[-self.max_length:]
return context_enc, continuation_enc
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
def _tokenize(e):
prefix, target = self._encode_pair(e["prefix"], e["target"])
return {
"prefix_text": e["prefix"],
"target_text": e["target"],
"prefix": prefix,
"target": target,
}
ds = []
ds = [{"prefix": req.args[0], "target": req.args[1]} for req in requests]
ds = Dataset.from_list(ds)
print(ds[0])
ds = ds.map(_tokenize)
ds = ds.with_format("torch")
out = []
with torch.no_grad():
for elem in tqdm(ds, desc="Computing likelihood..."):
prefix = elem["prefix"]
target = elem["target"]
# likelihood calculations are modified from https://github.com/ML-GSAI/SMDM/blob/main/evaluate_diff.py
if self.nll_type == 'mc':
ll = -self._eval_target_nll_mc(prefix, target)
if self.log_type == 'union':
ll = ll / (len(target) + len(prefix))
elif self.nll_type == 'ar_ftb' or self.nll_type == 'ar_btf':
ll = -self._eval_target_nll_ar(prefix, target)
else:
raise NotImplementedError(self.nll_type)
# TODO: greedy decoding
is_target_greedy_dec = False
out.append((ll, 1.0 if is_target_greedy_dec else 0.0))
return out
def loglikelihood_rolling(self, requests: List[Instance]) -> List[float]:
raise NotImplementedError
if __name__ == "__main__":
set_seed(1234)
cli_evaluate()