Upload 2 files
Browse files- app (1).py +698 -0
- requirements (1).txt +17 -0
app (1).py
ADDED
|
@@ -0,0 +1,698 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
IS_SPACE = True
|
| 3 |
+
|
| 4 |
+
if IS_SPACE:
|
| 5 |
+
import spaces
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
import sys
|
| 9 |
+
import warnings
|
| 10 |
+
import subprocess
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from typing import Optional, Tuple, Dict
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
def space_context(duration: int):
|
| 16 |
+
if IS_SPACE:
|
| 17 |
+
return spaces.GPU(duration=duration)
|
| 18 |
+
return lambda x: x
|
| 19 |
+
|
| 20 |
+
@space_context(duration=120)
|
| 21 |
+
def test_env():
|
| 22 |
+
assert torch.cuda.is_available()
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
import flash_attn
|
| 26 |
+
except ImportError:
|
| 27 |
+
print("Flash-attn not found, installing...")
|
| 28 |
+
os.system("pip install flash-attn==2.7.3 --no-build-isolation")
|
| 29 |
+
|
| 30 |
+
else:
|
| 31 |
+
print("Flash-attn found, skipping installation...")
|
| 32 |
+
test_env()
|
| 33 |
+
|
| 34 |
+
warnings.filterwarnings("ignore")
|
| 35 |
+
|
| 36 |
+
# Add the current directory to Python path
|
| 37 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
import gradio as gr
|
| 41 |
+
from PIL import Image
|
| 42 |
+
from hyimage.diffusion.pipelines.hunyuanimage_pipeline import HunyuanImagePipeline
|
| 43 |
+
from huggingface_hub import snapshot_download
|
| 44 |
+
import modelscope
|
| 45 |
+
except ImportError as e:
|
| 46 |
+
print(f"Missing required dependencies: {e}")
|
| 47 |
+
print("Please install with: pip install -r requirements_gradio.txt")
|
| 48 |
+
print("For checkpoint downloads, also install: pip install -U 'huggingface_hub[cli]' modelscope")
|
| 49 |
+
sys.exit(1)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
BASE_DIR = os.environ.get('HUNYUANIMAGE_V2_1_MODEL_ROOT', './ckpts')
|
| 53 |
+
|
| 54 |
+
class CheckpointDownloader:
|
| 55 |
+
"""Handles downloading of all required checkpoints for HunyuanImage."""
|
| 56 |
+
|
| 57 |
+
def __init__(self, base_dir: str = BASE_DIR):
|
| 58 |
+
self.base_dir = Path(base_dir)
|
| 59 |
+
self.base_dir.mkdir(exist_ok=True)
|
| 60 |
+
print(f'Downloading checkpoints to: {self.base_dir}')
|
| 61 |
+
|
| 62 |
+
# Define all required checkpoints
|
| 63 |
+
self.checkpoints = {
|
| 64 |
+
"main_model": {
|
| 65 |
+
"repo_id": "tencent/HunyuanImage-2.1",
|
| 66 |
+
"local_dir": self.base_dir,
|
| 67 |
+
},
|
| 68 |
+
"mllm_encoder": {
|
| 69 |
+
"repo_id": "Qwen/Qwen2.5-VL-7B-Instruct",
|
| 70 |
+
"local_dir": self.base_dir / "text_encoder" / "llm",
|
| 71 |
+
},
|
| 72 |
+
"byt5_encoder": {
|
| 73 |
+
"repo_id": "google/byt5-small",
|
| 74 |
+
"local_dir": self.base_dir / "text_encoder" / "byt5-small",
|
| 75 |
+
},
|
| 76 |
+
"glyph_encoder": {
|
| 77 |
+
"repo_id": "AI-ModelScope/Glyph-SDXL-v2",
|
| 78 |
+
"local_dir": self.base_dir / "text_encoder" / "Glyph-SDXL-v2",
|
| 79 |
+
"use_modelscope": True
|
| 80 |
+
}
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
def download_checkpoint(self, checkpoint_name: str, progress_callback=None) -> Tuple[bool, str]:
|
| 84 |
+
"""Download a specific checkpoint."""
|
| 85 |
+
if checkpoint_name not in self.checkpoints:
|
| 86 |
+
return False, f"Unknown checkpoint: {checkpoint_name}"
|
| 87 |
+
|
| 88 |
+
config = self.checkpoints[checkpoint_name]
|
| 89 |
+
local_dir = config["local_dir"]
|
| 90 |
+
local_dir.mkdir(parents=True, exist_ok=True)
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
if config.get("use_modelscope", False):
|
| 94 |
+
# Use modelscope for Chinese models
|
| 95 |
+
return self._download_with_modelscope(config, progress_callback)
|
| 96 |
+
else:
|
| 97 |
+
# Use huggingface_hub for other models
|
| 98 |
+
return self._download_with_hf(config, progress_callback)
|
| 99 |
+
except Exception as e:
|
| 100 |
+
return False, f"Download failed: {str(e)}"
|
| 101 |
+
|
| 102 |
+
def _download_with_hf(self, config: Dict, progress_callback=None) -> Tuple[bool, str]:
|
| 103 |
+
"""Download using huggingface_hub."""
|
| 104 |
+
repo_id = config["repo_id"]
|
| 105 |
+
local_dir = config["local_dir"]
|
| 106 |
+
|
| 107 |
+
if progress_callback:
|
| 108 |
+
progress_callback(f"Downloading {repo_id}...")
|
| 109 |
+
|
| 110 |
+
try:
|
| 111 |
+
snapshot_download(
|
| 112 |
+
repo_id=repo_id,
|
| 113 |
+
local_dir=str(local_dir),
|
| 114 |
+
local_dir_use_symlinks=False,
|
| 115 |
+
resume_download=True
|
| 116 |
+
)
|
| 117 |
+
return True, f"Successfully downloaded {repo_id}"
|
| 118 |
+
except Exception as e:
|
| 119 |
+
return False, f"HF download failed: {str(e)}"
|
| 120 |
+
|
| 121 |
+
def _download_with_modelscope(self, config: Dict, progress_callback=None) -> Tuple[bool, str]:
|
| 122 |
+
"""Download using modelscope."""
|
| 123 |
+
repo_id = config["repo_id"]
|
| 124 |
+
local_dir = config["local_dir"]
|
| 125 |
+
|
| 126 |
+
if progress_callback:
|
| 127 |
+
progress_callback(f"Downloading {repo_id} via ModelScope...")
|
| 128 |
+
print(f"Downloading {repo_id} via ModelScope...")
|
| 129 |
+
|
| 130 |
+
try:
|
| 131 |
+
# Use subprocess to call modelscope CLI
|
| 132 |
+
cmd = [
|
| 133 |
+
"modelscope", "download",
|
| 134 |
+
"--model", repo_id,
|
| 135 |
+
"--local_dir", str(local_dir)
|
| 136 |
+
]
|
| 137 |
+
|
| 138 |
+
subprocess.run(cmd, capture_output=True, text=True, check=True)
|
| 139 |
+
return True, f"Successfully downloaded {repo_id} via ModelScope"
|
| 140 |
+
except subprocess.CalledProcessError as e:
|
| 141 |
+
return False, f"ModelScope download failed: {e.stderr}"
|
| 142 |
+
except FileNotFoundError:
|
| 143 |
+
return False, "ModelScope CLI not found. Install with: pip install modelscope"
|
| 144 |
+
|
| 145 |
+
def download_all_checkpoints(self, progress_callback=None) -> Tuple[bool, str, Dict[str, any]]:
|
| 146 |
+
"""Download all checkpoints."""
|
| 147 |
+
results = {}
|
| 148 |
+
for name, _ in self.checkpoints.items():
|
| 149 |
+
if progress_callback:
|
| 150 |
+
progress_callback(f"Starting download of {name}...")
|
| 151 |
+
|
| 152 |
+
success, message = self.download_checkpoint(name, progress_callback)
|
| 153 |
+
results[name] = {"success": success, "message": message}
|
| 154 |
+
|
| 155 |
+
if not success:
|
| 156 |
+
return False, f"Failed to download {name}: {message}", results
|
| 157 |
+
return True, "All checkpoints downloaded successfully", results
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
@space_context(duration=2000)
|
| 161 |
+
def load_pipeline(use_distilled: bool = False, device: str = "cuda"):
|
| 162 |
+
"""Load the HunyuanImage pipeline (only load once, refiner and reprompt are accessed from it)."""
|
| 163 |
+
try:
|
| 164 |
+
assert not use_distilled # use_distilled is a placeholder for the future
|
| 165 |
+
|
| 166 |
+
print(f"Loading HunyuanImage pipeline (distilled={use_distilled})...")
|
| 167 |
+
model_name = "hunyuanimage-v2.1-distilled" if use_distilled else "hunyuanimage-v2.1"
|
| 168 |
+
pipeline = HunyuanImagePipeline.from_pretrained(
|
| 169 |
+
model_name=model_name,
|
| 170 |
+
device=device,
|
| 171 |
+
enable_dit_offloading=True,
|
| 172 |
+
enable_reprompt_model_offloading=True,
|
| 173 |
+
enable_refiner_offloading=True
|
| 174 |
+
)
|
| 175 |
+
pipeline.to('cpu')
|
| 176 |
+
refiner_pipeline = pipeline.refiner_pipeline
|
| 177 |
+
refiner_pipeline.text_encoder.model = pipeline.text_encoder.model
|
| 178 |
+
refiner_pipeline.to('cpu')
|
| 179 |
+
reprompt_model = pipeline.reprompt_model
|
| 180 |
+
|
| 181 |
+
print("β Pipeline loaded successfully")
|
| 182 |
+
return pipeline
|
| 183 |
+
except Exception as e:
|
| 184 |
+
error_msg = f"Error loading pipeline: {str(e)}"
|
| 185 |
+
print(f"β {error_msg}")
|
| 186 |
+
raise
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# if IS_SPACE:
|
| 190 |
+
# downloader = CheckpointDownloader()
|
| 191 |
+
# downloader.download_all_checkpoints()
|
| 192 |
+
|
| 193 |
+
pipeline = load_pipeline(use_distilled=False, device="cuda")
|
| 194 |
+
class HunyuanImageApp:
|
| 195 |
+
|
| 196 |
+
@space_context(duration=290)
|
| 197 |
+
def __init__(self, auto_load: bool = True, use_distilled: bool = False, device: str = "cuda"):
|
| 198 |
+
"""Initialize the HunyuanImage Gradio app."""
|
| 199 |
+
global pipeline
|
| 200 |
+
|
| 201 |
+
self.pipeline = pipeline
|
| 202 |
+
self.current_use_distilled = None
|
| 203 |
+
|
| 204 |
+
# Define aspect ratio mappings
|
| 205 |
+
self.aspect_ratio_mappings = {
|
| 206 |
+
"16:9": (2560, 1536),
|
| 207 |
+
"4:3": (2304, 1792),
|
| 208 |
+
"1:1": (2048, 2048),
|
| 209 |
+
"3:4": (1792, 2304),
|
| 210 |
+
"9:16": (1536, 2560)
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def print_peak_memory(self):
|
| 215 |
+
import torch
|
| 216 |
+
stats = torch.cuda.memory_stats()
|
| 217 |
+
peak_bytes_requirement = stats["allocated_bytes.all.peak"]
|
| 218 |
+
print(f"Before refiner Peak memory requirement: {peak_bytes_requirement / 1024 ** 3:.2f} GB")
|
| 219 |
+
|
| 220 |
+
def update_resolution(self, aspect_ratio_choice: str) -> Tuple[int, int]:
|
| 221 |
+
"""Update width and height based on selected aspect ratio."""
|
| 222 |
+
# Extract the aspect ratio key from the choice (e.g., "16:9" from "16:9 (2560Γ1536)")
|
| 223 |
+
aspect_key = aspect_ratio_choice.split(" (")[0]
|
| 224 |
+
if aspect_key in self.aspect_ratio_mappings:
|
| 225 |
+
return self.aspect_ratio_mappings[aspect_key]
|
| 226 |
+
else:
|
| 227 |
+
# Default to 1:1 if not found
|
| 228 |
+
return self.aspect_ratio_mappings["1:1"]
|
| 229 |
+
|
| 230 |
+
@space_context(duration=300)
|
| 231 |
+
def generate_image(self,
|
| 232 |
+
prompt: str,
|
| 233 |
+
negative_prompt: str,
|
| 234 |
+
width: int,
|
| 235 |
+
height: int,
|
| 236 |
+
num_inference_steps: int,
|
| 237 |
+
guidance_scale: float,
|
| 238 |
+
seed: int,
|
| 239 |
+
use_reprompt: bool,
|
| 240 |
+
use_refiner: bool,
|
| 241 |
+
# use_distilled: bool
|
| 242 |
+
) -> Tuple[Optional[Image.Image], str]:
|
| 243 |
+
"""Generate an image using the HunyuanImage pipeline."""
|
| 244 |
+
try:
|
| 245 |
+
torch.cuda.empty_cache()
|
| 246 |
+
|
| 247 |
+
if self.pipeline is None:
|
| 248 |
+
return None, "Pipeline not loaded. Please try again."
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
if hasattr(self.pipeline, '_refiner_pipeline'):
|
| 252 |
+
self.pipeline.refiner_pipeline.to('cpu')
|
| 253 |
+
self.pipeline.to('cuda')
|
| 254 |
+
if seed == -1:
|
| 255 |
+
import random
|
| 256 |
+
seed = random.randint(100000, 999999)
|
| 257 |
+
|
| 258 |
+
# Generate image
|
| 259 |
+
image = self.pipeline(
|
| 260 |
+
prompt=prompt,
|
| 261 |
+
negative_prompt=negative_prompt,
|
| 262 |
+
width=width,
|
| 263 |
+
height=height,
|
| 264 |
+
num_inference_steps=num_inference_steps,
|
| 265 |
+
guidance_scale=guidance_scale,
|
| 266 |
+
seed=seed,
|
| 267 |
+
shift=5,
|
| 268 |
+
use_reprompt=use_reprompt,
|
| 269 |
+
use_refiner=use_refiner
|
| 270 |
+
)
|
| 271 |
+
self.print_peak_memory()
|
| 272 |
+
return image, "Image generated successfully!"
|
| 273 |
+
|
| 274 |
+
except Exception as e:
|
| 275 |
+
error_msg = f"Error generating image: {str(e)}"
|
| 276 |
+
print(f"β {error_msg}")
|
| 277 |
+
return None, error_msg
|
| 278 |
+
|
| 279 |
+
@space_context(duration=300)
|
| 280 |
+
def enhance_prompt(self, prompt: str, # use_distilled: bool
|
| 281 |
+
) -> Tuple[str, str]:
|
| 282 |
+
"""Enhance a prompt using the reprompt model."""
|
| 283 |
+
try:
|
| 284 |
+
torch.cuda.empty_cache()
|
| 285 |
+
|
| 286 |
+
# Load pipeline if needed
|
| 287 |
+
if self.pipeline is None:
|
| 288 |
+
return prompt, "Pipeline not loaded. Please try again."
|
| 289 |
+
|
| 290 |
+
self.pipeline.to('cpu')
|
| 291 |
+
if hasattr(self.pipeline, '_refiner_pipeline'):
|
| 292 |
+
self.pipeline.refiner_pipeline.to('cpu')
|
| 293 |
+
|
| 294 |
+
# Use reprompt model from the main pipeline
|
| 295 |
+
enhanced_prompt = self.pipeline.reprompt_model.predict(prompt)
|
| 296 |
+
self.print_peak_memory()
|
| 297 |
+
return enhanced_prompt, "Prompt enhanced successfully!"
|
| 298 |
+
|
| 299 |
+
except Exception as e:
|
| 300 |
+
error_msg = f"Error enhancing prompt: {str(e)}"
|
| 301 |
+
print(f"β {error_msg}")
|
| 302 |
+
return prompt, error_msg
|
| 303 |
+
|
| 304 |
+
@space_context(duration=300)
|
| 305 |
+
def refine_image(self,
|
| 306 |
+
image: Image.Image,
|
| 307 |
+
prompt: str,
|
| 308 |
+
width: int,
|
| 309 |
+
height: int,
|
| 310 |
+
num_inference_steps: int,
|
| 311 |
+
guidance_scale: float,
|
| 312 |
+
seed: int) -> Tuple[Optional[Image.Image], str]:
|
| 313 |
+
"""Refine an image using the refiner pipeline."""
|
| 314 |
+
try:
|
| 315 |
+
if image is None:
|
| 316 |
+
return None, "Please upload an image to refine."
|
| 317 |
+
|
| 318 |
+
if not prompt or prompt.strip() == "":
|
| 319 |
+
return None, "Please enter a refinement prompt."
|
| 320 |
+
|
| 321 |
+
torch.cuda.empty_cache()
|
| 322 |
+
|
| 323 |
+
# Resize image to target dimensions if needed
|
| 324 |
+
if image.size != (width, height):
|
| 325 |
+
image = image.resize((width, height), Image.Resampling.LANCZOS)
|
| 326 |
+
|
| 327 |
+
self.pipeline.to('cpu')
|
| 328 |
+
self.pipeline.refiner_pipeline.to('cuda')
|
| 329 |
+
if seed == -1:
|
| 330 |
+
import random
|
| 331 |
+
seed = random.randint(100000, 999999)
|
| 332 |
+
|
| 333 |
+
# Use refiner from the main pipeline
|
| 334 |
+
refined_image = self.pipeline.refiner_pipeline(
|
| 335 |
+
image=image,
|
| 336 |
+
prompt=prompt,
|
| 337 |
+
width=width,
|
| 338 |
+
height=height,
|
| 339 |
+
num_inference_steps=num_inference_steps,
|
| 340 |
+
guidance_scale=guidance_scale,
|
| 341 |
+
seed=seed
|
| 342 |
+
)
|
| 343 |
+
self.print_peak_memory()
|
| 344 |
+
return refined_image, "Image refined successfully!"
|
| 345 |
+
|
| 346 |
+
except Exception as e:
|
| 347 |
+
error_msg = f"Error refining image: {str(e)}"
|
| 348 |
+
print(f"β {error_msg}")
|
| 349 |
+
return None, error_msg
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def download_single_checkpoint(self, checkpoint_name: str) -> Tuple[bool, str]:
|
| 353 |
+
"""Download a single checkpoint."""
|
| 354 |
+
try:
|
| 355 |
+
success, message = self.downloader.download_checkpoint(checkpoint_name)
|
| 356 |
+
return success, message
|
| 357 |
+
except Exception as e:
|
| 358 |
+
return False, f"Download error: {str(e)}"
|
| 359 |
+
|
| 360 |
+
def download_all_checkpoints(self) -> Tuple[bool, str, Dict[str, any]]:
|
| 361 |
+
"""Download all missing checkpoints."""
|
| 362 |
+
try:
|
| 363 |
+
success, message, results = self.downloader.download_all_checkpoints()
|
| 364 |
+
return success, message, results
|
| 365 |
+
except Exception as e:
|
| 366 |
+
return False, f"Download error: {str(e)}", {}
|
| 367 |
+
|
| 368 |
+
def create_interface(auto_load: bool = True, use_distilled: bool = False, device: str = "cuda"):
|
| 369 |
+
"""Create the Gradio interface."""
|
| 370 |
+
app = HunyuanImageApp(auto_load=auto_load, use_distilled=use_distilled, device=device)
|
| 371 |
+
|
| 372 |
+
# Custom CSS for better styling with dark mode support
|
| 373 |
+
css = """
|
| 374 |
+
.gradio-container {
|
| 375 |
+
max-width: 1200px !important;
|
| 376 |
+
margin: auto !important;
|
| 377 |
+
}
|
| 378 |
+
.tab-nav {
|
| 379 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
| 380 |
+
border-radius: 10px;
|
| 381 |
+
padding: 10px;
|
| 382 |
+
margin-bottom: 20px;
|
| 383 |
+
}
|
| 384 |
+
.model-info {
|
| 385 |
+
background: var(--background-fill-secondary);
|
| 386 |
+
border: 1px solid var(--border-color-primary);
|
| 387 |
+
border-radius: 8px;
|
| 388 |
+
padding: 15px;
|
| 389 |
+
margin-bottom: 20px;
|
| 390 |
+
color: var(--body-text-color);
|
| 391 |
+
}
|
| 392 |
+
.model-info h1, .model-info h2, .model-info h3 {
|
| 393 |
+
color: var(--body-text-color) !important;
|
| 394 |
+
}
|
| 395 |
+
.model-info p, .model-info li {
|
| 396 |
+
color: var(--body-text-color) !important;
|
| 397 |
+
}
|
| 398 |
+
.model-info strong {
|
| 399 |
+
color: var(--body-text-color) !important;
|
| 400 |
+
}
|
| 401 |
+
"""
|
| 402 |
+
|
| 403 |
+
with gr.Blocks(css=css, title="HunyuanImage Pipeline", theme=gr.themes.Soft()) as demo:
|
| 404 |
+
gr.Markdown(
|
| 405 |
+
"""
|
| 406 |
+
# π¨ HunyuanImage 2.1 Pipeline
|
| 407 |
+
**HunyuanImage-2.1: An Efficient Diffusion Model for High-Resolution (2K) Text-to-Image Generationβ**
|
| 408 |
+
|
| 409 |
+
This app provides three main functionalities:
|
| 410 |
+
1. **Text-to-Image Generation**: Generate high-quality images from text prompts
|
| 411 |
+
2. **Prompt Enhancement**: Improve your prompts using MLLM reprompting
|
| 412 |
+
3. **Image Refinement**: Enhance existing images with the refiner model
|
| 413 |
+
""",
|
| 414 |
+
elem_classes="model-info"
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
with gr.Tabs():
|
| 418 |
+
# Tab 1: Text-to-Image Generation
|
| 419 |
+
with gr.Tab("πΌοΈ Text-to-Image Generation"):
|
| 420 |
+
with gr.Row():
|
| 421 |
+
with gr.Column(scale=1):
|
| 422 |
+
gr.Markdown("### Generation Settings")
|
| 423 |
+
gr.Markdown("**Model**: HunyuanImage v2.1 (Non-distilled)")
|
| 424 |
+
|
| 425 |
+
# use_distilled = gr.Checkbox(
|
| 426 |
+
# label="Use Distilled Model",
|
| 427 |
+
# value=False,
|
| 428 |
+
# info="Faster generation with slightly lower quality"
|
| 429 |
+
# )
|
| 430 |
+
use_distilled = False
|
| 431 |
+
|
| 432 |
+
prompt = gr.Textbox(
|
| 433 |
+
label="Prompt",
|
| 434 |
+
placeholder="",
|
| 435 |
+
lines=3,
|
| 436 |
+
value="A cute, cartoon-style anthropomorphic penguin plush toy with fluffy fur, standing in a painting studio, wearing a red knitted scarf and a red beret with the word βTencentβ on it, holding a paintbrush with a focused expression as it paints an oil painting of the Mona Lisa, rendered in a photorealistic photographic style."
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
negative_prompt = gr.Textbox(
|
| 440 |
+
label="Negative Prompt",
|
| 441 |
+
placeholder="",
|
| 442 |
+
lines=2,
|
| 443 |
+
value=""
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
# Predefined aspect ratios
|
| 447 |
+
aspect_ratios = [
|
| 448 |
+
("16:9 (2560Γ1536)", "16:9"),
|
| 449 |
+
("4:3 (2304Γ1792)", "4:3"),
|
| 450 |
+
("1:1 (2048Γ2048)", "1:1"),
|
| 451 |
+
("3:4 (1792Γ2304)", "3:4"),
|
| 452 |
+
("9:16 (1536Γ2560)", "9:16")
|
| 453 |
+
]
|
| 454 |
+
|
| 455 |
+
aspect_ratio = gr.Radio(
|
| 456 |
+
choices=aspect_ratios,
|
| 457 |
+
value="1:1",
|
| 458 |
+
label="Aspect Ratio",
|
| 459 |
+
info="Select the aspect ratio for image generation"
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
# Hidden width and height inputs that get updated based on aspect ratio
|
| 463 |
+
width = gr.Number(value=2048, visible=False)
|
| 464 |
+
height = gr.Number(value=2048, visible=False)
|
| 465 |
+
|
| 466 |
+
with gr.Row():
|
| 467 |
+
num_inference_steps = gr.Slider(
|
| 468 |
+
minimum=10, maximum=100, step=5, value=50,
|
| 469 |
+
label="Inference Steps", info="More steps = better quality, slower generation"
|
| 470 |
+
)
|
| 471 |
+
guidance_scale = gr.Slider(
|
| 472 |
+
minimum=1.0, maximum=10.0, step=0.1, value=3.5,
|
| 473 |
+
label="Guidance Scale", info="How closely to follow the prompt"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
with gr.Row():
|
| 477 |
+
seed = gr.Number(
|
| 478 |
+
label="Seed", value=-1, precision=0,
|
| 479 |
+
info="Random seed for reproducibility. (-1 for random seed)"
|
| 480 |
+
)
|
| 481 |
+
use_reprompt = gr.Checkbox(
|
| 482 |
+
label="Use Reprompt", value=True,
|
| 483 |
+
info="Enhance prompt automatically"
|
| 484 |
+
)
|
| 485 |
+
use_refiner = gr.Checkbox(
|
| 486 |
+
label="Use Refiner", value=True,
|
| 487 |
+
info="Apply refiner after generation ",
|
| 488 |
+
interactive=True
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
generate_btn = gr.Button("π¨ Generate Image", variant="primary", size="lg")
|
| 492 |
+
|
| 493 |
+
with gr.Column(scale=1):
|
| 494 |
+
gr.Markdown("### Generated Image")
|
| 495 |
+
generated_image = gr.Image(
|
| 496 |
+
label="Generated Image",
|
| 497 |
+
format="png",
|
| 498 |
+
show_download_button=True,
|
| 499 |
+
type="pil",
|
| 500 |
+
height=600
|
| 501 |
+
)
|
| 502 |
+
generation_status = gr.Textbox(
|
| 503 |
+
label="Status",
|
| 504 |
+
interactive=False,
|
| 505 |
+
value="Ready to generate"
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
# Tab 2: Prompt Enhancement
|
| 509 |
+
with gr.Tab("β¨ Prompt Enhancement"):
|
| 510 |
+
with gr.Row():
|
| 511 |
+
with gr.Column(scale=1):
|
| 512 |
+
gr.Markdown("### Prompt Enhancement Settings")
|
| 513 |
+
gr.Markdown("**Model**: HunyuanImage v2.1 Reprompt Model")
|
| 514 |
+
|
| 515 |
+
# enhance_use_distilled = gr.Checkbox(
|
| 516 |
+
# label="Use Distilled Model",
|
| 517 |
+
# value=False,
|
| 518 |
+
# info="For loading the reprompt model"
|
| 519 |
+
# )
|
| 520 |
+
enhance_use_distilled = False
|
| 521 |
+
|
| 522 |
+
original_prompt = gr.Textbox(
|
| 523 |
+
label="Original Prompt",
|
| 524 |
+
placeholder="A cat sitting on a table",
|
| 525 |
+
lines=4,
|
| 526 |
+
value="A cat sitting on a table"
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
enhance_btn = gr.Button("β¨ Enhance Prompt", variant="primary", size="lg")
|
| 530 |
+
|
| 531 |
+
with gr.Column(scale=1):
|
| 532 |
+
gr.Markdown("### Enhanced Prompt")
|
| 533 |
+
enhanced_prompt = gr.Textbox(
|
| 534 |
+
label="Enhanced Prompt",
|
| 535 |
+
lines=6,
|
| 536 |
+
interactive=False
|
| 537 |
+
)
|
| 538 |
+
enhancement_status = gr.Textbox(
|
| 539 |
+
label="Status",
|
| 540 |
+
interactive=False,
|
| 541 |
+
value="Ready to enhance"
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
# # Tab 3: Image Refinement
|
| 545 |
+
with gr.Tab("π§ Image Refinement"):
|
| 546 |
+
with gr.Row():
|
| 547 |
+
with gr.Column(scale=1):
|
| 548 |
+
gr.Markdown("### Refinement Settings")
|
| 549 |
+
gr.Markdown("**Model**: HunyuanImage v2.1 Refiner")
|
| 550 |
+
|
| 551 |
+
input_image = gr.Image(
|
| 552 |
+
label="Input Image",
|
| 553 |
+
type="pil",
|
| 554 |
+
height=300
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
refine_prompt = gr.Textbox(
|
| 558 |
+
label="Refinement Prompt",
|
| 559 |
+
placeholder="Image description",
|
| 560 |
+
info="This prompt should describe the image content.",
|
| 561 |
+
lines=2,
|
| 562 |
+
value=""
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
with gr.Row():
|
| 566 |
+
refine_width = gr.Slider(
|
| 567 |
+
minimum=512, maximum=2048, step=64, value=2048,
|
| 568 |
+
label="Width", info="Output width"
|
| 569 |
+
)
|
| 570 |
+
refine_height = gr.Slider(
|
| 571 |
+
minimum=512, maximum=2048, step=64, value=2048,
|
| 572 |
+
label="Height", info="Output height"
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
with gr.Row():
|
| 576 |
+
refine_steps = gr.Slider(
|
| 577 |
+
minimum=1, maximum=20, step=1, value=4,
|
| 578 |
+
label="Refinement Steps", info="More steps = more refinement"
|
| 579 |
+
)
|
| 580 |
+
refine_guidance = gr.Slider(
|
| 581 |
+
minimum=1.0, maximum=10.0, step=0.1, value=3.5,
|
| 582 |
+
label="Guidance Scale", info="How strongly to follow the prompt"
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
refine_seed = gr.Number(
|
| 586 |
+
label="Seed", value=-1, precision=0,
|
| 587 |
+
info="Random seed for reproducibility"
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
refine_btn = gr.Button("π§ Refine Image", variant="primary", size="lg")
|
| 591 |
+
|
| 592 |
+
with gr.Column(scale=1):
|
| 593 |
+
gr.Markdown("### Refined Image")
|
| 594 |
+
refined_image = gr.Image(
|
| 595 |
+
label="Refined Image",
|
| 596 |
+
type="pil",
|
| 597 |
+
format="png",
|
| 598 |
+
show_download_button=True,
|
| 599 |
+
height=600
|
| 600 |
+
)
|
| 601 |
+
refinement_status = gr.Textbox(
|
| 602 |
+
label="Status",
|
| 603 |
+
interactive=False,
|
| 604 |
+
value="Ready to refine"
|
| 605 |
+
)
|
| 606 |
+
|
| 607 |
+
# Event handlers
|
| 608 |
+
# Update width and height when aspect ratio changes
|
| 609 |
+
aspect_ratio.change(
|
| 610 |
+
fn=app.update_resolution,
|
| 611 |
+
inputs=[aspect_ratio],
|
| 612 |
+
outputs=[width, height]
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
generate_btn.click(
|
| 616 |
+
fn=app.generate_image,
|
| 617 |
+
inputs=[
|
| 618 |
+
prompt, negative_prompt, width, height, num_inference_steps,
|
| 619 |
+
guidance_scale, seed, use_reprompt, use_refiner # , use_distilled
|
| 620 |
+
],
|
| 621 |
+
outputs=[generated_image, generation_status]
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
enhance_btn.click(
|
| 625 |
+
fn=app.enhance_prompt,
|
| 626 |
+
inputs=[original_prompt],
|
| 627 |
+
outputs=[enhanced_prompt, enhancement_status]
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
refine_btn.click(
|
| 631 |
+
fn=app.refine_image,
|
| 632 |
+
inputs=[
|
| 633 |
+
input_image, refine_prompt,
|
| 634 |
+
refine_width, refine_height, refine_steps, refine_guidance, refine_seed
|
| 635 |
+
],
|
| 636 |
+
outputs=[refined_image, refinement_status]
|
| 637 |
+
)
|
| 638 |
+
|
| 639 |
+
# Additional info
|
| 640 |
+
gr.Markdown(
|
| 641 |
+
"""
|
| 642 |
+
### π Usage Tips
|
| 643 |
+
|
| 644 |
+
**Text-to-Image Generation:**
|
| 645 |
+
- Use descriptive prompts with specific details
|
| 646 |
+
- Adjust guidance scale: higher values follow prompts more closely
|
| 647 |
+
- More inference steps generally produce better quality
|
| 648 |
+
- Enable reprompt for automatic prompt enhancement
|
| 649 |
+
- Enable refiner for additional quality improvement
|
| 650 |
+
|
| 651 |
+
**Prompt Enhancement:**
|
| 652 |
+
- Enter your basic prompt idea
|
| 653 |
+
- The AI will enhance it with better structure and details
|
| 654 |
+
- Enhanced prompts often produce better results
|
| 655 |
+
|
| 656 |
+
**Image Refinement:**
|
| 657 |
+
- Upload any image you want to improve
|
| 658 |
+
- Describe what improvements you want in the refinement prompt
|
| 659 |
+
- The refiner will enhance details and quality
|
| 660 |
+
- Works best with images generated by HunyuanImage
|
| 661 |
+
""",
|
| 662 |
+
elem_classes="model-info"
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
return demo
|
| 666 |
+
|
| 667 |
+
if __name__ == "__main__":
|
| 668 |
+
import argparse
|
| 669 |
+
|
| 670 |
+
# Parse command line arguments
|
| 671 |
+
parser = argparse.ArgumentParser(description="Launch HunyuanImage Gradio App")
|
| 672 |
+
parser.add_argument("--no-auto-load", action="store_true", help="Disable auto-loading pipeline on startup")
|
| 673 |
+
parser.add_argument("--use-distilled", action="store_true", help="Use distilled model")
|
| 674 |
+
parser.add_argument("--device", type=str, default="cuda", help="Device to use (cuda/cpu)")
|
| 675 |
+
parser.add_argument("--port", type=int, default=8081, help="Port to run the app on")
|
| 676 |
+
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to bind to")
|
| 677 |
+
|
| 678 |
+
args = parser.parse_args()
|
| 679 |
+
|
| 680 |
+
# Create and launch the interface
|
| 681 |
+
auto_load = not args.no_auto_load
|
| 682 |
+
demo = create_interface(auto_load=auto_load, use_distilled=args.use_distilled, device=args.device)
|
| 683 |
+
|
| 684 |
+
print("π Starting HunyuanImage Gradio App...")
|
| 685 |
+
print(f"π§ Auto-load pipeline: {'Yes' if auto_load else 'No'}")
|
| 686 |
+
print(f"π― Model type: {'Distilled' if args.use_distilled else 'Non-distilled'}")
|
| 687 |
+
print(f"π» Device: {args.device}")
|
| 688 |
+
print("β οΈ Make sure you have the required model checkpoints downloaded!")
|
| 689 |
+
|
| 690 |
+
demo.launch(
|
| 691 |
+
server_name=args.host,
|
| 692 |
+
# server_port=args.port,
|
| 693 |
+
share=False,
|
| 694 |
+
show_error=True,
|
| 695 |
+
quiet=False,
|
| 696 |
+
max_threads=1, # Default: sequential processing (recommended for GPU apps)
|
| 697 |
+
# max_threads=4, # Enable parallel processing (requires more GPU memory)
|
| 698 |
+
)
|
requirements (1).txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tqdm==4.67.1
|
| 2 |
+
torch>=2.6.0
|
| 3 |
+
einops==0.8.0
|
| 4 |
+
loguru==0.7.3
|
| 5 |
+
numpy==1.26.4
|
| 6 |
+
pillow==11.3.0
|
| 7 |
+
omegaconf>=2.3.0
|
| 8 |
+
torchaudio==2.6.0
|
| 9 |
+
diffusers>=0.32.0
|
| 10 |
+
safetensors==0.4.5
|
| 11 |
+
torchvision==0.21.0
|
| 12 |
+
huggingface-hub==0.34.0
|
| 13 |
+
transformers[accelerate,tiktoken]==4.56.0
|
| 14 |
+
wheel
|
| 15 |
+
setuptools
|
| 16 |
+
modelscope
|
| 17 |
+
huggingface_hub[cli]
|