Spaces:
Build error
Build error
| import asyncio | |
| import functools | |
| import os | |
| import re | |
| import huggingface_hub | |
| import pandas as pd | |
| from datasets import load_dataset | |
| from evaluation.benchmarks.gaia.scorer import question_scorer | |
| from evaluation.utils.shared import ( | |
| EvalMetadata, | |
| EvalOutput, | |
| codeact_user_response, | |
| compatibility_for_eval_history_pairs, | |
| get_default_sandbox_config_for_eval, | |
| make_metadata, | |
| prepare_dataset, | |
| reset_logger_for_multiprocessing, | |
| run_evaluation, | |
| ) | |
| from openhands.controller.state.state import State | |
| from openhands.core.config import ( | |
| OpenHandsConfig, | |
| get_llm_config_arg, | |
| get_parser, | |
| ) | |
| from openhands.core.config.utils import get_agent_config_arg | |
| from openhands.core.logger import openhands_logger as logger | |
| from openhands.core.main import create_runtime, run_controller | |
| from openhands.events.action import AgentFinishAction, CmdRunAction, MessageAction | |
| from openhands.events.observation import CmdOutputObservation | |
| from openhands.runtime.base import Runtime | |
| from openhands.utils.async_utils import call_async_from_sync | |
| DATASET_CACHE_DIR = os.path.join(os.path.dirname(__file__), 'data') | |
| AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { | |
| 'CodeActAgent': functools.partial(codeact_user_response, encapsulate_solution=True), | |
| } | |
| AGENT_CLS_TO_INST_SUFFIX = { | |
| 'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n' | |
| } | |
| def get_config( | |
| metadata: EvalMetadata, | |
| ) -> OpenHandsConfig: | |
| sandbox_config = get_default_sandbox_config_for_eval() | |
| sandbox_config.base_container_image = 'python:3.12-bookworm' | |
| config = OpenHandsConfig( | |
| default_agent=metadata.agent_class, | |
| run_as_openhands=False, | |
| runtime='docker', | |
| max_iterations=metadata.max_iterations, | |
| sandbox=sandbox_config, | |
| # do not mount workspace | |
| workspace_base=None, | |
| workspace_mount_path=None, | |
| ) | |
| config.set_llm_config(metadata.llm_config) | |
| if metadata.agent_config: | |
| config.set_agent_config(metadata.agent_config, metadata.agent_class) | |
| else: | |
| logger.info('Agent config not provided, using default settings') | |
| agent_config = config.get_agent_config(metadata.agent_class) | |
| agent_config.enable_prompt_extensions = False | |
| return config | |
| def initialize_runtime( | |
| runtime: Runtime, | |
| instance: pd.Series, # this argument is not required | |
| ): | |
| """Initialize the runtime for the agent. | |
| This function is called before the runtime is used to run the agent. | |
| """ | |
| logger.info(f'{"-" * 50} BEGIN Runtime Initialization Fn {"-" * 50}') | |
| obs: CmdOutputObservation | |
| action = CmdRunAction(command='mkdir -p /workspace') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| if instance['file_name'] != '': | |
| # if this question comes with a file, we need to save it to the workspace | |
| assert metadata.data_split is not None | |
| src_file = os.path.join( | |
| DATASET_CACHE_DIR, '2023', metadata.data_split, instance['file_name'] | |
| ) | |
| assert os.path.exists(src_file) | |
| dest_file = os.path.join('/workspace', instance['file_name']) | |
| runtime.copy_to(src_file, dest_file) | |
| # rename to file.extension_name | |
| extension_name = instance['file_name'].split('.')[-1] | |
| action = CmdRunAction( | |
| command=f'mv /workspace/{instance["file_name"]} /workspace/file.{extension_name}' | |
| ) | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| action = CmdRunAction(command='cd /workspace') | |
| logger.info(action, extra={'msg_type': 'ACTION'}) | |
| obs = runtime.run_action(action) | |
| assert obs.exit_code == 0 | |
| logger.info(f'{"-" * 50} END Runtime Initialization Fn {"-" * 50}') | |
| def process_instance( | |
| instance: pd.Series, | |
| metadata: EvalMetadata, | |
| reset_logger: bool = True, | |
| ) -> EvalOutput: | |
| config = get_config(metadata) | |
| # Setup the logger properly, so you can run multi-processing to parallelize the evaluation | |
| if reset_logger: | |
| log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') | |
| reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir) | |
| else: | |
| logger.info(f'Starting evaluation for instance {instance["instance_id"]}.') | |
| if instance['file_name'] != '': | |
| extension_name = instance['file_name'].split('.')[-1] | |
| dest_file = os.path.join('/workspace', f'file.{extension_name}') | |
| else: | |
| dest_file = None | |
| # Prepare instruction | |
| instruction = f'{instance["Question"]}\n' | |
| logger.info(f'Instruction: {instruction}') | |
| if dest_file: | |
| instruction += f'\n\nThe mentioned file is provided in the workspace at: {dest_file.split("/")[-1]}' | |
| instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n' | |
| instruction += 'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n' | |
| instruction += ( | |
| 'For example: The answer to the question is <solution> 42 </solution>.\n' | |
| ) | |
| # NOTE: You can actually set slightly different instruction for different agents | |
| instruction += AGENT_CLS_TO_INST_SUFFIX.get(metadata.agent_class, '') | |
| logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'}) | |
| runtime = create_runtime(config) | |
| call_async_from_sync(runtime.connect) | |
| initialize_runtime(runtime, instance) | |
| # Here's how you can run the agent (similar to the `main` function) and get the final task state | |
| state: State | None = asyncio.run( | |
| run_controller( | |
| config=config, | |
| initial_user_action=MessageAction(content=instruction), | |
| runtime=runtime, | |
| fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ | |
| metadata.agent_class | |
| ], | |
| ) | |
| ) | |
| # ======= Attempt to evaluate the agent's edits ======= | |
| # If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction) | |
| # You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation. | |
| if state is None: | |
| raise ValueError('State should not be None.') | |
| model_answer_raw = '' | |
| # get the last message or thought from the agent | |
| for event in reversed(state.history): | |
| if event.source == 'agent': | |
| if isinstance(event, AgentFinishAction): | |
| model_answer_raw = event.thought | |
| break | |
| elif isinstance(event, CmdRunAction): | |
| model_answer_raw = event.thought | |
| break | |
| elif isinstance(event, MessageAction): | |
| model_answer_raw = event.content | |
| break | |
| # attempt to parse model_answer | |
| model_answer = re.findall(r'<solution>(.*?)</solution>', model_answer_raw) | |
| if len(model_answer) == 0: | |
| logger.warning(f'Failed to parse model answer: {model_answer_raw}') | |
| model_answer = model_answer_raw | |
| else: | |
| model_answer = model_answer[0] | |
| logger.info( | |
| f'Final message: {model_answer} | Ground truth: {instance["Final answer"]}' | |
| ) | |
| score = question_scorer( | |
| model_answer=model_answer, ground_truth=instance['Final answer'] | |
| ) | |
| test_result = { | |
| 'score': score, | |
| 'model_answer_raw': model_answer_raw, | |
| 'model_answer': model_answer, | |
| 'ground_truth': instance['Final answer'], | |
| } | |
| metrics = state.metrics.get() if state.metrics else None | |
| # history is now available as a stream of events, rather than list of pairs of (Action, Observation) | |
| # for compatibility with the existing output format, we can remake the pairs here | |
| # remove when it becomes unnecessary | |
| histories = compatibility_for_eval_history_pairs(state.history) | |
| # Save the output | |
| output = EvalOutput( | |
| instance_id=instance['instance_id'], | |
| instance=instance.to_dict(), | |
| instruction=instance['Question'], | |
| metadata=metadata, | |
| history=histories, | |
| metrics=metrics, | |
| error=state.last_error if state and state.last_error else None, | |
| test_result=test_result, | |
| ) | |
| return output | |
| if __name__ == '__main__': | |
| parser = get_parser() | |
| parser.add_argument( | |
| '--level', | |
| type=str, | |
| help='gaia level to evaluate, eg. 2023_level1', | |
| ) | |
| parser.add_argument( | |
| '--data-split', | |
| type=str, | |
| help='data split to evaluate, eg. test', | |
| default='validation', | |
| ) | |
| args, _ = parser.parse_known_args() | |
| agent_config = None | |
| if args.agent_config: | |
| agent_config = get_agent_config_arg(args.agent_config) | |
| llm_config = None | |
| if args.llm_config: | |
| llm_config = get_llm_config_arg(args.llm_config) | |
| # modify_params must be False for evaluation purpose, for reproducibility and accurancy of results | |
| llm_config.modify_params = False | |
| if llm_config is None: | |
| raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}') | |
| metadata = make_metadata( | |
| llm_config=llm_config, | |
| dataset_name='gaia', | |
| agent_class=args.agent_cls, | |
| max_iterations=args.max_iterations, | |
| eval_note=args.eval_note, | |
| eval_output_dir=args.eval_output_dir, | |
| data_split=args.data_split, | |
| details={'gaia-level': args.level}, | |
| agent_config=agent_config, | |
| ) | |
| dataset = load_dataset('gaia-benchmark/GAIA', args.level) | |
| huggingface_hub.snapshot_download( | |
| 'gaia-benchmark/GAIA', | |
| repo_type='dataset', | |
| local_dir=DATASET_CACHE_DIR, | |
| ) | |
| gaia_tests = dataset[metadata.data_split].to_pandas() | |
| gaia_tests.rename(columns={'task_id': 'instance_id'}, inplace=True) | |
| output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') | |
| prepared_dataset = prepare_dataset(gaia_tests, output_file, args.eval_n_limit) | |
| run_evaluation( | |
| dataset=prepared_dataset, | |
| metadata=metadata, | |
| output_file=output_file, | |
| num_workers=args.eval_num_workers, | |
| process_instance_func=process_instance, | |
| ) | |