Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,404 +1,404 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import pandas as pd
|
| 4 |
-
|
| 5 |
-
from classifier import classify
|
| 6 |
-
from statistics import mean
|
| 7 |
-
from qa_summary import generate_answer
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
HFTOKEN = os.environ["HF_TOKEN"]
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
js = """
|
| 15 |
-
async () => {
|
| 16 |
-
// Load Twitter Widgets script
|
| 17 |
-
const script = document.createElement("script");
|
| 18 |
-
script.onload = () => console.log("Twitter Widgets.js loaded");
|
| 19 |
-
script.src = "https://platform.twitter.com/widgets.js";
|
| 20 |
-
document.head.appendChild(script);
|
| 21 |
-
|
| 22 |
-
// Define a global function to reload Twitter widgets
|
| 23 |
-
globalThis.reloadTwitterWidgets = () => {
|
| 24 |
-
if (window.twttr && twttr.widgets) {
|
| 25 |
-
twttr.widgets.load();
|
| 26 |
-
}
|
| 27 |
-
};
|
| 28 |
-
}
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
def T_on_select(evt: gr.SelectData):
|
| 32 |
-
|
| 33 |
-
if evt.index[1] == 3:
|
| 34 |
-
html = """<blockquote class="twitter-tweet" data-dnt="true" data-theme="dark">""" + \
|
| 35 |
-
f"""\n<a href="https://twitter.com/anyuser/status/{evt.value}"></a></blockquote>"""
|
| 36 |
-
else:
|
| 37 |
-
html = f"""<h2>{evt.value}</h2>"""
|
| 38 |
-
return gr.update(value=html)
|
| 39 |
-
|
| 40 |
-
def single_classification(text, event_model, threshold):
|
| 41 |
-
res = classify(text, event_model, HFTOKEN, threshold)
|
| 42 |
-
return res["event"], res["score"]
|
| 43 |
-
|
| 44 |
-
def load_and_classify_csv(file, text_field, event_model, threshold):
|
| 45 |
-
filepath = file.name
|
| 46 |
-
if ".csv" in filepath:
|
| 47 |
-
df = pd.read_csv(filepath)
|
| 48 |
-
else:
|
| 49 |
-
df = pd.read_table(filepath)
|
| 50 |
-
|
| 51 |
-
if text_field not in df.columns:
|
| 52 |
-
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
|
| 53 |
-
|
| 54 |
-
labels, scores = [], []
|
| 55 |
-
for post in df[text_field].to_list():
|
| 56 |
-
res = classify(post, event_model, HFTOKEN, threshold)
|
| 57 |
-
labels.append(res["event"])
|
| 58 |
-
scores.append(res["score"])
|
| 59 |
-
|
| 60 |
-
df["model_label"] = labels
|
| 61 |
-
df["model_score"] = scores
|
| 62 |
-
|
| 63 |
-
# model_confidence = round(mean(scores), 5)
|
| 64 |
-
model_confidence = mean(scores)
|
| 65 |
-
fire_related = gr.CheckboxGroup(choices=df[df["model_label"]=="fire"][text_field].to_list())
|
| 66 |
-
flood_related = gr.CheckboxGroup(choices=df[df["model_label"]=="flood"][text_field].to_list())
|
| 67 |
-
not_related = gr.CheckboxGroup(choices=df[df["model_label"]=="none"][text_field].to_list())
|
| 68 |
-
|
| 69 |
-
return flood_related, fire_related, not_related, model_confidence, len(df[text_field].to_list()), df, gr.update(interactive=True), gr.update(interactive=True)
|
| 70 |
-
|
| 71 |
-
def load_and_classify_csv_dataframe(file, text_field, event_model, threshold): #, filter
|
| 72 |
-
|
| 73 |
-
filepath = file.name
|
| 74 |
-
if ".csv" in filepath:
|
| 75 |
-
df = pd.read_csv(filepath)
|
| 76 |
-
else:
|
| 77 |
-
df = pd.read_table(filepath)
|
| 78 |
-
|
| 79 |
-
if text_field not in df.columns:
|
| 80 |
-
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
|
| 81 |
-
|
| 82 |
-
labels, scores = [], []
|
| 83 |
-
for post in df[text_field].to_list():
|
| 84 |
-
res = classify(post, event_model, HFTOKEN, threshold)
|
| 85 |
-
labels.append(res["event"])
|
| 86 |
-
scores.append(round(res["score"], 5))
|
| 87 |
-
|
| 88 |
-
df["event_label"] = labels
|
| 89 |
-
df["model_score"] = scores
|
| 90 |
-
|
| 91 |
-
result_df = df[[text_field, "event_label", "model_score", "tweet_id"]].copy()
|
| 92 |
-
result_df["tweet_id"] = result_df["tweet_id"].astype(str)
|
| 93 |
-
|
| 94 |
-
filters = list(result_df["event_label"].unique())
|
| 95 |
-
extra_filters = ['Not-'+x for x in filters]+['All']
|
| 96 |
-
|
| 97 |
-
return gr.update(value=result_df), result_df, gr.update(choices=sorted(filters+extra_filters),
|
| 98 |
-
value='All',
|
| 99 |
-
label="Filter data by label",
|
| 100 |
-
visible=True)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def calculate_accuracy(flood_selections, fire_selections, none_selections, num_posts, text_field, data_df):
|
| 104 |
-
posts = data_df[text_field].to_list()
|
| 105 |
-
selections = flood_selections + fire_selections + none_selections
|
| 106 |
-
eval = []
|
| 107 |
-
for post in posts:
|
| 108 |
-
if post in selections:
|
| 109 |
-
eval.append("incorrect")
|
| 110 |
-
else:
|
| 111 |
-
eval.append("correct")
|
| 112 |
-
|
| 113 |
-
data_df["model_eval"] = eval
|
| 114 |
-
incorrect = len(selections)
|
| 115 |
-
correct = num_posts - incorrect
|
| 116 |
-
accuracy = (correct/num_posts)*100
|
| 117 |
-
|
| 118 |
-
data_df.to_csv("output.csv")
|
| 119 |
-
return incorrect, correct, accuracy, data_df, gr.DownloadButton(label=f"Download CSV", value="output.csv", visible=True)
|
| 120 |
-
|
| 121 |
-
def init_queries(history):
|
| 122 |
-
history = history or []
|
| 123 |
-
if not history:
|
| 124 |
-
history = [
|
| 125 |
-
"What areas are being evacuated?",
|
| 126 |
-
"What areas are predicted to be impacted?",
|
| 127 |
-
"What areas are without power?",
|
| 128 |
-
"What barriers are hindering response efforts?",
|
| 129 |
-
"What events have been canceled?",
|
| 130 |
-
"What preparations are being made?",
|
| 131 |
-
"What regions have announced a state of emergency?",
|
| 132 |
-
"What roads are blocked / closed?",
|
| 133 |
-
"What services have been closed?",
|
| 134 |
-
"What warnings are currently in effect?",
|
| 135 |
-
"Where are emergency services deployed?",
|
| 136 |
-
"Where are emergency services needed?",
|
| 137 |
-
"Where are evacuations needed?",
|
| 138 |
-
"Where are people needing rescued?",
|
| 139 |
-
"Where are recovery efforts taking place?",
|
| 140 |
-
"Where has building or infrastructure damage occurred?",
|
| 141 |
-
"Where has flooding occured?"
|
| 142 |
-
"Where are volunteers being requested?",
|
| 143 |
-
"Where has road damage occured?",
|
| 144 |
-
"What area has the wildfire burned?",
|
| 145 |
-
"Where have homes been damaged or destroyed?"]
|
| 146 |
-
|
| 147 |
-
return gr.CheckboxGroup(choices=history), history
|
| 148 |
-
|
| 149 |
-
def add_query(to_add, history):
|
| 150 |
-
if to_add not in history:
|
| 151 |
-
history.append(to_add)
|
| 152 |
-
return gr.CheckboxGroup(choices=history), history
|
| 153 |
-
|
| 154 |
-
def qa_summarise(selected_queries, qa_llm_model, text_field, data_df):
|
| 155 |
-
|
| 156 |
-
qa_input_df = data_df[data_df["model_label"] != "none"].reset_index()
|
| 157 |
-
texts = qa_input_df[text_field].to_list()
|
| 158 |
-
|
| 159 |
-
summary = generate_answer(qa_llm_model, texts, selected_queries[0], selected_queries, mode="multi_summarize")
|
| 160 |
-
|
| 161 |
-
doc_df = pd.DataFrame()
|
| 162 |
-
doc_df["number"] = [i+1 for i in range(len(texts))]
|
| 163 |
-
doc_df["text"] = texts
|
| 164 |
-
|
| 165 |
-
return summary, doc_df
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
with gr.Blocks(fill_width=True) as demo:
|
| 169 |
-
|
| 170 |
-
demo.load(None,None,None,js=js)
|
| 171 |
-
|
| 172 |
-
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier",
|
| 173 |
-
"jayebaku/distilbert-base-multilingual-cased-weather-classifier-2",
|
| 174 |
-
"jayebaku/twitter-xlm-roberta-base-crexdata-relevance-classifier",
|
| 175 |
-
"jayebaku/twhin-bert-base-crexdata-relevance-classifier"]
|
| 176 |
-
|
| 177 |
-
T_data_ss_state = gr.State(value=pd.DataFrame())
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
with gr.Tab("Event Type Classification"):
|
| 181 |
-
gr.Markdown(
|
| 182 |
-
"""
|
| 183 |
-
# T4.5 Relevance Classifier Demo
|
| 184 |
-
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
| 185 |
-
Usage:\n
|
| 186 |
-
- Upload .tsv or .csv data file (must contain a text column with social media posts).\n
|
| 187 |
-
- Next, type the name of the text column.\n
|
| 188 |
-
- Then, choose a BERT classifier model from the drop down.\n
|
| 189 |
-
- Finally, click the 'start prediction' buttton.\n
|
| 190 |
-
""")
|
| 191 |
-
with gr.Row():
|
| 192 |
-
with gr.Column(scale=4):
|
| 193 |
-
T_file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
| 194 |
-
|
| 195 |
-
with gr.Column(scale=6):
|
| 196 |
-
T_text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
| 197 |
-
T_event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
| 198 |
-
T_predict_button = gr.Button("Start Prediction")
|
| 199 |
-
with gr.Accordion("Prediction threshold", open=False):
|
| 200 |
-
T_threshold = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold", show_label=False,
|
| 201 |
-
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
| 202 |
-
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
| 203 |
-
|
| 204 |
-
with gr.Row():
|
| 205 |
-
with gr.Column(scale=8):
|
| 206 |
-
T_data = gr.DataFrame(wrap=True,
|
| 207 |
-
show_fullscreen_button=True,
|
| 208 |
-
show_copy_button=True,
|
| 209 |
-
show_row_numbers=True,
|
| 210 |
-
show_search="filter",
|
| 211 |
-
column_widths=["49%","17%","17%","17%"])
|
| 212 |
-
|
| 213 |
-
with gr.Column(scale=2):
|
| 214 |
-
T_data_filter = gr.Dropdown(visible=False)
|
| 215 |
-
T_tweet_embed = gr.HTML("<h1>Select a Tweet ID to view Tweet</h1>")
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
with gr.Tab("Event Type Classification Eval"):
|
| 220 |
-
gr.Markdown(
|
| 221 |
-
"""
|
| 222 |
-
# T4.5 Relevance Classifier Demo
|
| 223 |
-
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
| 224 |
-
Usage:\n
|
| 225 |
-
- Upload .tsv or .csv data file (must contain a text column with social media posts).\n
|
| 226 |
-
- Next, type the name of the text column.\n
|
| 227 |
-
- Then, choose a BERT classifier model from the drop down.\n
|
| 228 |
-
- Finally, click the 'start prediction' buttton.\n
|
| 229 |
-
Evaluation:\n
|
| 230 |
-
- To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
|
| 231 |
-
- Then, click on the 'Calculate Accuracy' button.\n
|
| 232 |
-
- Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
|
| 233 |
-
""")
|
| 234 |
-
with gr.Row():
|
| 235 |
-
with gr.Column(scale=4):
|
| 236 |
-
file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
| 237 |
-
|
| 238 |
-
with gr.Column(scale=6):
|
| 239 |
-
text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
| 240 |
-
event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
| 241 |
-
ETCE_predict_button = gr.Button("Start Prediction")
|
| 242 |
-
with gr.Accordion("Prediction threshold", open=False):
|
| 243 |
-
threshold = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold", show_label=False,
|
| 244 |
-
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
| 245 |
-
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
| 246 |
-
|
| 247 |
-
with gr.Row(): # XXX confirm this is not a problem later --equal_height=True
|
| 248 |
-
with gr.Column():
|
| 249 |
-
gr.Markdown("""### Flood-related""")
|
| 250 |
-
flood_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 251 |
-
|
| 252 |
-
with gr.Column():
|
| 253 |
-
gr.Markdown("""### Fire-related""")
|
| 254 |
-
fire_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 255 |
-
|
| 256 |
-
with gr.Column():
|
| 257 |
-
gr.Markdown("""### None""")
|
| 258 |
-
none_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 259 |
-
|
| 260 |
-
with gr.Row():
|
| 261 |
-
with gr.Column(scale=5):
|
| 262 |
-
gr.Markdown(r"""
|
| 263 |
-
Accuracy: is the model's ability to make correct predicitons.
|
| 264 |
-
It is the fraction of correct prediction out of the total predictions.
|
| 265 |
-
|
| 266 |
-
$$
|
| 267 |
-
\text{Accuracy} = \frac{\text{Correct predictions}}{\text{All predictions}} * 100
|
| 268 |
-
$$
|
| 269 |
-
|
| 270 |
-
Model Confidence: is the mean probabilty of each case
|
| 271 |
-
belonging to their assigned classes. A value of 1 is best.
|
| 272 |
-
""", latex_delimiters=[{ "left": "$$", "right": "$$", "display": True }])
|
| 273 |
-
gr.Markdown("\n\n\n")
|
| 274 |
-
model_confidence = gr.Number(label="Model Confidence")
|
| 275 |
-
|
| 276 |
-
with gr.Column(scale=5):
|
| 277 |
-
correct = gr.Number(label="Number of correct classifications")
|
| 278 |
-
incorrect = gr.Number(label="Number of incorrect classifications")
|
| 279 |
-
accuracy = gr.Number(label="Model Accuracy (%)")
|
| 280 |
-
|
| 281 |
-
ETCE_accuracy_button = gr.Button("Calculate Accuracy")
|
| 282 |
-
download_csv = gr.DownloadButton(visible=False)
|
| 283 |
-
num_posts = gr.Number(visible=False)
|
| 284 |
-
data = gr.DataFrame(visible=False)
|
| 285 |
-
data_eval = gr.DataFrame(visible=False)
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
qa_tab = gr.Tab("Question Answering")
|
| 289 |
-
with qa_tab:
|
| 290 |
-
gr.Markdown(
|
| 291 |
-
"""
|
| 292 |
-
# Question Answering Demo
|
| 293 |
-
This section uses RAG to answer questions about the relevant social media posts identified by the relevance classifier\n
|
| 294 |
-
Usage:\n
|
| 295 |
-
- Select queries from predefined\n
|
| 296 |
-
- Parameters for QA can be editted in sidebar\n
|
| 297 |
-
|
| 298 |
-
Note: QA process is disabled untill after the relevance classification is done
|
| 299 |
-
""")
|
| 300 |
-
|
| 301 |
-
with gr.Accordion("Parameters", open=False):
|
| 302 |
-
with gr.Row():
|
| 303 |
-
with gr.Column():
|
| 304 |
-
qa_llm_model = gr.Dropdown(["mistral", "solar", "phi3mini"], label="QA model", value="phi3mini", interactive=True)
|
| 305 |
-
aggregator = gr.Dropdown(["linear", "outrank"], label="Aggregation method", value="linear", interactive=True)
|
| 306 |
-
with gr.Column():
|
| 307 |
-
batch_size = gr.Slider(50, 500, value=150, step=1, label="Batch size", info="Choose between 50 and 500", interactive=True)
|
| 308 |
-
topk = gr.Slider(1, 10, value=5, step=1, label="Number of results to retrieve", info="Choose between 1 and 10", interactive=True)
|
| 309 |
-
|
| 310 |
-
selected_queries = gr.CheckboxGroup(label="Select at least one query using the checkboxes", interactive=True)
|
| 311 |
-
queries_state = gr.State()
|
| 312 |
-
qa_tab.select(init_queries, inputs=queries_state, outputs=[selected_queries, queries_state])
|
| 313 |
-
|
| 314 |
-
query_inp = gr.Textbox(label="Add custom queries like the one above, one at a time")
|
| 315 |
-
QA_addqry_button = gr.Button("Add to queries", interactive=False)
|
| 316 |
-
QA_run_button = gr.Button("Start QA", interactive=False)
|
| 317 |
-
hsummary = gr.Textbox(label="Summary")
|
| 318 |
-
|
| 319 |
-
qa_df = gr.DataFrame()
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
with gr.Tab("Single Text Classification"):
|
| 323 |
-
gr.Markdown(
|
| 324 |
-
"""
|
| 325 |
-
# Event Type Prediction Demo
|
| 326 |
-
In this section you test the relevance classifier with written texts.\n
|
| 327 |
-
Usage:\n
|
| 328 |
-
- Type a tweet-like text in the textbox.\n
|
| 329 |
-
- Then press Enter.\n
|
| 330 |
-
""")
|
| 331 |
-
with gr.Row():
|
| 332 |
-
with gr.Column(scale=3):
|
| 333 |
-
model_sing_classify = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
| 334 |
-
with gr.Column(scale=7):
|
| 335 |
-
threshold_sing_classify = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold",
|
| 336 |
-
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
| 337 |
-
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
| 338 |
-
|
| 339 |
-
text_to_classify = gr.Textbox(label="Text", info="Enter tweet-like text", submit_btn=True)
|
| 340 |
-
text_to_classify_examples = gr.Examples([["The streets are flooded, I can't leave #BostonStorm"],
|
| 341 |
-
["Controlado el incendio de Rodezno que ha obligado a desalojar a varias bodegas de la zona."],
|
| 342 |
-
["Cambrils:estaci贸 Renfe inundada 19 persones dins d'un tren. FGC a Capellades, petit descarrilament 5 passatgers #Inuncat @emergenciescat"],
|
| 343 |
-
["Anscheinend steht die komplette Neckarwiese unter Wasser! #Hochwasser"]], text_to_classify)
|
| 344 |
-
|
| 345 |
-
with gr.Row():
|
| 346 |
-
with gr.Column():
|
| 347 |
-
classification = gr.Textbox(label="Classification")
|
| 348 |
-
with gr.Column():
|
| 349 |
-
classification_score = gr.Number(label="Classification Score")
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
# Test event listeners
|
| 359 |
-
T_predict_button.click(
|
| 360 |
-
load_and_classify_csv_dataframe,
|
| 361 |
-
inputs=[T_file_input, T_text_field, T_event_model, T_threshold],
|
| 362 |
-
outputs=[T_data, T_data_ss_state, T_data_filter]
|
| 363 |
-
)
|
| 364 |
-
|
| 365 |
-
T_data.select(T_on_select, None, T_tweet_embed)
|
| 366 |
-
|
| 367 |
-
@T_data_filter.input(inputs=[T_data_ss_state, T_data_filter], outputs=T_data)
|
| 368 |
-
def filter_df(df, filter):
|
| 369 |
-
if filter == "All":
|
| 370 |
-
result_df = df.copy()
|
| 371 |
-
elif filter.startswith("Not"):
|
| 372 |
-
result_df = df[df["event_label"]!=filter.split('-')[1]].copy()
|
| 373 |
-
else:
|
| 374 |
-
result_df = df[df["event_label"]==filter].copy()
|
| 375 |
-
return gr.update(value=result_df)
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
# Button clicks ETC Eval
|
| 379 |
-
ETCE_predict_button.click(
|
| 380 |
-
load_and_classify_csv,
|
| 381 |
-
inputs=[file_input, text_field, event_model, threshold],
|
| 382 |
-
outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence, num_posts, data, QA_addqry_button, QA_run_button])
|
| 383 |
-
|
| 384 |
-
ETCE_accuracy_button.click(
|
| 385 |
-
calculate_accuracy,
|
| 386 |
-
inputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, num_posts, text_field, data],
|
| 387 |
-
outputs=[incorrect, correct, accuracy, data_eval, download_csv])
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
# Button clicks QA
|
| 391 |
-
QA_addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
|
| 392 |
-
|
| 393 |
-
QA_run_button.click(qa_summarise,
|
| 394 |
-
inputs=[selected_queries, qa_llm_model, text_field, data], ## XXX fix text_field
|
| 395 |
-
outputs=[hsummary, qa_df])
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
# Event listener for single text classification
|
| 399 |
-
text_to_classify.submit(
|
| 400 |
-
single_classification,
|
| 401 |
-
inputs=[text_to_classify, model_sing_classify, threshold_sing_classify],
|
| 402 |
-
outputs=[classification, classification_score])
|
| 403 |
-
|
| 404 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
from classifier import classify
|
| 6 |
+
from statistics import mean
|
| 7 |
+
from qa_summary import generate_answer
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
HFTOKEN = os.environ["HF_TOKEN"]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
js = """
|
| 15 |
+
async () => {
|
| 16 |
+
// Load Twitter Widgets script
|
| 17 |
+
const script = document.createElement("script");
|
| 18 |
+
script.onload = () => console.log("Twitter Widgets.js loaded");
|
| 19 |
+
script.src = "https://platform.twitter.com/widgets.js";
|
| 20 |
+
document.head.appendChild(script);
|
| 21 |
+
|
| 22 |
+
// Define a global function to reload Twitter widgets
|
| 23 |
+
globalThis.reloadTwitterWidgets = () => {
|
| 24 |
+
if (window.twttr && twttr.widgets) {
|
| 25 |
+
twttr.widgets.load();
|
| 26 |
+
}
|
| 27 |
+
};
|
| 28 |
+
}
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
def T_on_select(evt: gr.SelectData):
|
| 32 |
+
|
| 33 |
+
if evt.index[1] == 3:
|
| 34 |
+
html = """<blockquote class="twitter-tweet" data-dnt="true" data-theme="dark">""" + \
|
| 35 |
+
f"""\n<a href="https://twitter.com/anyuser/status/{evt.value}"></a></blockquote>"""
|
| 36 |
+
else:
|
| 37 |
+
html = f"""<h2>{evt.value}</h2>"""
|
| 38 |
+
return gr.update(value=html)
|
| 39 |
+
|
| 40 |
+
def single_classification(text, event_model, threshold):
|
| 41 |
+
res = classify(text, event_model, HFTOKEN, threshold)
|
| 42 |
+
return res["event"], res["score"]
|
| 43 |
+
|
| 44 |
+
def load_and_classify_csv(file, text_field, event_model, threshold):
|
| 45 |
+
filepath = file.name
|
| 46 |
+
if ".csv" in filepath:
|
| 47 |
+
df = pd.read_csv(filepath)
|
| 48 |
+
else:
|
| 49 |
+
df = pd.read_table(filepath)
|
| 50 |
+
|
| 51 |
+
if text_field not in df.columns:
|
| 52 |
+
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
|
| 53 |
+
|
| 54 |
+
labels, scores = [], []
|
| 55 |
+
for post in df[text_field].to_list():
|
| 56 |
+
res = classify(post, event_model, HFTOKEN, threshold)
|
| 57 |
+
labels.append(res["event"])
|
| 58 |
+
scores.append(res["score"])
|
| 59 |
+
|
| 60 |
+
df["model_label"] = labels
|
| 61 |
+
df["model_score"] = scores
|
| 62 |
+
|
| 63 |
+
# model_confidence = round(mean(scores), 5)
|
| 64 |
+
model_confidence = mean(scores)
|
| 65 |
+
fire_related = gr.CheckboxGroup(choices=df[df["model_label"]=="fire"][text_field].to_list())
|
| 66 |
+
flood_related = gr.CheckboxGroup(choices=df[df["model_label"]=="flood"][text_field].to_list())
|
| 67 |
+
not_related = gr.CheckboxGroup(choices=df[df["model_label"]=="none"][text_field].to_list())
|
| 68 |
+
|
| 69 |
+
return flood_related, fire_related, not_related, model_confidence, len(df[text_field].to_list()), df, gr.update(interactive=True), gr.update(interactive=True)
|
| 70 |
+
|
| 71 |
+
def load_and_classify_csv_dataframe(file, text_field, event_model, threshold): #, filter
|
| 72 |
+
|
| 73 |
+
filepath = file.name
|
| 74 |
+
if ".csv" in filepath:
|
| 75 |
+
df = pd.read_csv(filepath)
|
| 76 |
+
else:
|
| 77 |
+
df = pd.read_table(filepath)
|
| 78 |
+
|
| 79 |
+
if text_field not in df.columns:
|
| 80 |
+
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
|
| 81 |
+
|
| 82 |
+
labels, scores = [], []
|
| 83 |
+
for post in df[text_field].to_list():
|
| 84 |
+
res = classify(post, event_model, HFTOKEN, threshold)
|
| 85 |
+
labels.append(res["event"])
|
| 86 |
+
scores.append(round(res["score"], 5))
|
| 87 |
+
|
| 88 |
+
df["event_label"] = labels
|
| 89 |
+
df["model_score"] = scores
|
| 90 |
+
|
| 91 |
+
result_df = df[[text_field, "event_label", "model_score", "tweet_id"]].copy()
|
| 92 |
+
result_df["tweet_id"] = result_df["tweet_id"].astype(str)
|
| 93 |
+
|
| 94 |
+
filters = list(result_df["event_label"].unique())
|
| 95 |
+
extra_filters = ['Not-'+x for x in filters]+['All']
|
| 96 |
+
|
| 97 |
+
return gr.update(value=result_df), result_df, gr.update(choices=sorted(filters+extra_filters),
|
| 98 |
+
value='All',
|
| 99 |
+
label="Filter data by label",
|
| 100 |
+
visible=True)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def calculate_accuracy(flood_selections, fire_selections, none_selections, num_posts, text_field, data_df):
|
| 104 |
+
posts = data_df[text_field].to_list()
|
| 105 |
+
selections = flood_selections + fire_selections + none_selections
|
| 106 |
+
eval = []
|
| 107 |
+
for post in posts:
|
| 108 |
+
if post in selections:
|
| 109 |
+
eval.append("incorrect")
|
| 110 |
+
else:
|
| 111 |
+
eval.append("correct")
|
| 112 |
+
|
| 113 |
+
data_df["model_eval"] = eval
|
| 114 |
+
incorrect = len(selections)
|
| 115 |
+
correct = num_posts - incorrect
|
| 116 |
+
accuracy = (correct/num_posts)*100
|
| 117 |
+
|
| 118 |
+
data_df.to_csv("output.csv")
|
| 119 |
+
return incorrect, correct, accuracy, data_df, gr.DownloadButton(label=f"Download CSV", value="output.csv", visible=True)
|
| 120 |
+
|
| 121 |
+
def init_queries(history):
|
| 122 |
+
history = history or []
|
| 123 |
+
if not history:
|
| 124 |
+
history = [
|
| 125 |
+
"What areas are being evacuated?",
|
| 126 |
+
"What areas are predicted to be impacted?",
|
| 127 |
+
"What areas are without power?",
|
| 128 |
+
"What barriers are hindering response efforts?",
|
| 129 |
+
"What events have been canceled?",
|
| 130 |
+
"What preparations are being made?",
|
| 131 |
+
"What regions have announced a state of emergency?",
|
| 132 |
+
"What roads are blocked / closed?",
|
| 133 |
+
"What services have been closed?",
|
| 134 |
+
"What warnings are currently in effect?",
|
| 135 |
+
"Where are emergency services deployed?",
|
| 136 |
+
"Where are emergency services needed?",
|
| 137 |
+
"Where are evacuations needed?",
|
| 138 |
+
"Where are people needing rescued?",
|
| 139 |
+
"Where are recovery efforts taking place?",
|
| 140 |
+
"Where has building or infrastructure damage occurred?",
|
| 141 |
+
"Where has flooding occured?"
|
| 142 |
+
"Where are volunteers being requested?",
|
| 143 |
+
"Where has road damage occured?",
|
| 144 |
+
"What area has the wildfire burned?",
|
| 145 |
+
"Where have homes been damaged or destroyed?"]
|
| 146 |
+
|
| 147 |
+
return gr.CheckboxGroup(choices=history), history
|
| 148 |
+
|
| 149 |
+
def add_query(to_add, history):
|
| 150 |
+
if to_add not in history:
|
| 151 |
+
history.append(to_add)
|
| 152 |
+
return gr.CheckboxGroup(choices=history), history
|
| 153 |
+
|
| 154 |
+
def qa_summarise(selected_queries, qa_llm_model, text_field, data_df):
|
| 155 |
+
|
| 156 |
+
qa_input_df = data_df[data_df["model_label"] != "none"].reset_index()
|
| 157 |
+
texts = qa_input_df[text_field].to_list()
|
| 158 |
+
|
| 159 |
+
summary = generate_answer(qa_llm_model, texts, selected_queries[0], selected_queries, mode="multi_summarize")
|
| 160 |
+
|
| 161 |
+
doc_df = pd.DataFrame()
|
| 162 |
+
doc_df["number"] = [i+1 for i in range(len(texts))]
|
| 163 |
+
doc_df["text"] = texts
|
| 164 |
+
|
| 165 |
+
return summary, doc_df
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
with gr.Blocks(fill_width=True) as demo:
|
| 169 |
+
|
| 170 |
+
demo.load(None,None,None,js=js)
|
| 171 |
+
|
| 172 |
+
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier",
|
| 173 |
+
"jayebaku/distilbert-base-multilingual-cased-weather-classifier-2",
|
| 174 |
+
"jayebaku/twitter-xlm-roberta-base-crexdata-relevance-classifier",
|
| 175 |
+
"jayebaku/twhin-bert-base-crexdata-relevance-classifier"]
|
| 176 |
+
|
| 177 |
+
T_data_ss_state = gr.State(value=pd.DataFrame())
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
with gr.Tab("Event Type Classification"):
|
| 181 |
+
gr.Markdown(
|
| 182 |
+
"""
|
| 183 |
+
# T4.5 Relevance Classifier Demo
|
| 184 |
+
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
| 185 |
+
Usage:\n
|
| 186 |
+
- Upload .tsv or .csv data file (must contain a text column with social media posts).\n
|
| 187 |
+
- Next, type the name of the text column.\n
|
| 188 |
+
- Then, choose a BERT classifier model from the drop down.\n
|
| 189 |
+
- Finally, click the 'start prediction' buttton.\n
|
| 190 |
+
""")
|
| 191 |
+
with gr.Row():
|
| 192 |
+
with gr.Column(scale=4):
|
| 193 |
+
T_file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
| 194 |
+
|
| 195 |
+
with gr.Column(scale=6):
|
| 196 |
+
T_text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
| 197 |
+
T_event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
| 198 |
+
T_predict_button = gr.Button("Start Prediction")
|
| 199 |
+
with gr.Accordion("Prediction threshold", open=False):
|
| 200 |
+
T_threshold = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold", show_label=False,
|
| 201 |
+
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
| 202 |
+
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
| 203 |
+
|
| 204 |
+
with gr.Row():
|
| 205 |
+
with gr.Column(scale=8):
|
| 206 |
+
T_data = gr.DataFrame(wrap=True,
|
| 207 |
+
show_fullscreen_button=True,
|
| 208 |
+
show_copy_button=True,
|
| 209 |
+
show_row_numbers=True,
|
| 210 |
+
show_search="filter",
|
| 211 |
+
column_widths=["49%","17%","17%","17%"])
|
| 212 |
+
|
| 213 |
+
with gr.Column(scale=2):
|
| 214 |
+
T_data_filter = gr.Dropdown(visible=False)
|
| 215 |
+
T_tweet_embed = gr.HTML("<h1>Select a Tweet ID to view Tweet</h1>")
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
with gr.Tab("Event Type Classification Eval"):
|
| 220 |
+
gr.Markdown(
|
| 221 |
+
"""
|
| 222 |
+
# T4.5 Relevance Classifier Demo
|
| 223 |
+
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
| 224 |
+
Usage:\n
|
| 225 |
+
- Upload .tsv or .csv data file (must contain a text column with social media posts).\n
|
| 226 |
+
- Next, type the name of the text column.\n
|
| 227 |
+
- Then, choose a BERT classifier model from the drop down.\n
|
| 228 |
+
- Finally, click the 'start prediction' buttton.\n
|
| 229 |
+
Evaluation:\n
|
| 230 |
+
- To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
|
| 231 |
+
- Then, click on the 'Calculate Accuracy' button.\n
|
| 232 |
+
- Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
|
| 233 |
+
""")
|
| 234 |
+
with gr.Row():
|
| 235 |
+
with gr.Column(scale=4):
|
| 236 |
+
file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
| 237 |
+
|
| 238 |
+
with gr.Column(scale=6):
|
| 239 |
+
text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
| 240 |
+
event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
| 241 |
+
ETCE_predict_button = gr.Button("Start Prediction")
|
| 242 |
+
with gr.Accordion("Prediction threshold", open=False):
|
| 243 |
+
threshold = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold", show_label=False,
|
| 244 |
+
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
| 245 |
+
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
| 246 |
+
|
| 247 |
+
with gr.Row(): # XXX confirm this is not a problem later --equal_height=True
|
| 248 |
+
with gr.Column():
|
| 249 |
+
gr.Markdown("""### Flood-related""")
|
| 250 |
+
flood_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 251 |
+
|
| 252 |
+
with gr.Column():
|
| 253 |
+
gr.Markdown("""### Fire-related""")
|
| 254 |
+
fire_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 255 |
+
|
| 256 |
+
with gr.Column():
|
| 257 |
+
gr.Markdown("""### None""")
|
| 258 |
+
none_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 259 |
+
|
| 260 |
+
with gr.Row():
|
| 261 |
+
with gr.Column(scale=5):
|
| 262 |
+
gr.Markdown(r"""
|
| 263 |
+
Accuracy: is the model's ability to make correct predicitons.
|
| 264 |
+
It is the fraction of correct prediction out of the total predictions.
|
| 265 |
+
|
| 266 |
+
$$
|
| 267 |
+
\text{Accuracy} = \frac{\text{Correct predictions}}{\text{All predictions}} * 100
|
| 268 |
+
$$
|
| 269 |
+
|
| 270 |
+
Model Confidence: is the mean probabilty of each case
|
| 271 |
+
belonging to their assigned classes. A value of 1 is best.
|
| 272 |
+
""", latex_delimiters=[{ "left": "$$", "right": "$$", "display": True }])
|
| 273 |
+
gr.Markdown("\n\n\n")
|
| 274 |
+
model_confidence = gr.Number(label="Model Confidence")
|
| 275 |
+
|
| 276 |
+
with gr.Column(scale=5):
|
| 277 |
+
correct = gr.Number(label="Number of correct classifications")
|
| 278 |
+
incorrect = gr.Number(label="Number of incorrect classifications")
|
| 279 |
+
accuracy = gr.Number(label="Model Accuracy (%)")
|
| 280 |
+
|
| 281 |
+
ETCE_accuracy_button = gr.Button("Calculate Accuracy")
|
| 282 |
+
download_csv = gr.DownloadButton(visible=False)
|
| 283 |
+
num_posts = gr.Number(visible=False)
|
| 284 |
+
data = gr.DataFrame(visible=False)
|
| 285 |
+
data_eval = gr.DataFrame(visible=False)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
qa_tab = gr.Tab("Question Answering")
|
| 289 |
+
with qa_tab:
|
| 290 |
+
gr.Markdown(
|
| 291 |
+
"""
|
| 292 |
+
# Question Answering Demo
|
| 293 |
+
This section uses RAG to answer questions about the relevant social media posts identified by the relevance classifier\n
|
| 294 |
+
Usage:\n
|
| 295 |
+
- Select queries from predefined\n
|
| 296 |
+
- Parameters for QA can be editted in sidebar\n
|
| 297 |
+
|
| 298 |
+
Note: QA process is disabled untill after the relevance classification is done
|
| 299 |
+
""")
|
| 300 |
+
|
| 301 |
+
with gr.Accordion("Parameters", open=False):
|
| 302 |
+
with gr.Row():
|
| 303 |
+
with gr.Column():
|
| 304 |
+
qa_llm_model = gr.Dropdown(["mistral", "solar", "phi3mini"], label="QA model", value="phi3mini", interactive=True)
|
| 305 |
+
aggregator = gr.Dropdown(["linear", "outrank"], label="Aggregation method", value="linear", interactive=True)
|
| 306 |
+
with gr.Column():
|
| 307 |
+
batch_size = gr.Slider(50, 500, value=150, step=1, label="Batch size", info="Choose between 50 and 500", interactive=True)
|
| 308 |
+
topk = gr.Slider(1, 10, value=5, step=1, label="Number of results to retrieve", info="Choose between 1 and 10", interactive=True)
|
| 309 |
+
|
| 310 |
+
selected_queries = gr.CheckboxGroup(label="Select at least one query using the checkboxes", interactive=True)
|
| 311 |
+
queries_state = gr.State()
|
| 312 |
+
qa_tab.select(init_queries, inputs=queries_state, outputs=[selected_queries, queries_state])
|
| 313 |
+
|
| 314 |
+
query_inp = gr.Textbox(label="Add custom queries like the one above, one at a time")
|
| 315 |
+
QA_addqry_button = gr.Button("Add to queries", interactive=False)
|
| 316 |
+
QA_run_button = gr.Button("Start QA", interactive=False)
|
| 317 |
+
hsummary = gr.Textbox(label="Summary")
|
| 318 |
+
|
| 319 |
+
qa_df = gr.DataFrame()
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
with gr.Tab("Single Text Classification"):
|
| 323 |
+
gr.Markdown(
|
| 324 |
+
"""
|
| 325 |
+
# Event Type Prediction Demo
|
| 326 |
+
In this section you test the relevance classifier with written texts.\n
|
| 327 |
+
Usage:\n
|
| 328 |
+
- Type a tweet-like text in the textbox.\n
|
| 329 |
+
- Then press Enter.\n
|
| 330 |
+
""")
|
| 331 |
+
with gr.Row():
|
| 332 |
+
with gr.Column(scale=3):
|
| 333 |
+
model_sing_classify = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
| 334 |
+
with gr.Column(scale=7):
|
| 335 |
+
threshold_sing_classify = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold",
|
| 336 |
+
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
| 337 |
+
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
| 338 |
+
|
| 339 |
+
text_to_classify = gr.Textbox(label="Text", info="Enter tweet-like text", submit_btn=True)
|
| 340 |
+
text_to_classify_examples = gr.Examples([["The streets are flooded, I can't leave #BostonStorm"],
|
| 341 |
+
["Controlado el incendio de Rodezno que ha obligado a desalojar a varias bodegas de la zona."],
|
| 342 |
+
["Cambrils:estaci贸 Renfe inundada 19 persones dins d'un tren. FGC a Capellades, petit descarrilament 5 passatgers #Inuncat @emergenciescat"],
|
| 343 |
+
["Anscheinend steht die komplette Neckarwiese unter Wasser! #Hochwasser"]], text_to_classify)
|
| 344 |
+
|
| 345 |
+
with gr.Row():
|
| 346 |
+
with gr.Column():
|
| 347 |
+
classification = gr.Textbox(label="Classification")
|
| 348 |
+
with gr.Column():
|
| 349 |
+
classification_score = gr.Number(label="Classification Score")
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
# Test event listeners
|
| 359 |
+
T_predict_button.click(
|
| 360 |
+
load_and_classify_csv_dataframe,
|
| 361 |
+
inputs=[T_file_input, T_text_field, T_event_model, T_threshold],
|
| 362 |
+
outputs=[T_data, T_data_ss_state, T_data_filter]
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
T_data.select(T_on_select, None, T_tweet_embed)#.then(fn=None, js="reloadTwitterWidgets()")
|
| 366 |
+
|
| 367 |
+
@T_data_filter.input(inputs=[T_data_ss_state, T_data_filter], outputs=T_data)
|
| 368 |
+
def filter_df(df, filter):
|
| 369 |
+
if filter == "All":
|
| 370 |
+
result_df = df.copy()
|
| 371 |
+
elif filter.startswith("Not"):
|
| 372 |
+
result_df = df[df["event_label"]!=filter.split('-')[1]].copy()
|
| 373 |
+
else:
|
| 374 |
+
result_df = df[df["event_label"]==filter].copy()
|
| 375 |
+
return gr.update(value=result_df)
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
# Button clicks ETC Eval
|
| 379 |
+
ETCE_predict_button.click(
|
| 380 |
+
load_and_classify_csv,
|
| 381 |
+
inputs=[file_input, text_field, event_model, threshold],
|
| 382 |
+
outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence, num_posts, data, QA_addqry_button, QA_run_button])
|
| 383 |
+
|
| 384 |
+
ETCE_accuracy_button.click(
|
| 385 |
+
calculate_accuracy,
|
| 386 |
+
inputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, num_posts, text_field, data],
|
| 387 |
+
outputs=[incorrect, correct, accuracy, data_eval, download_csv])
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
# Button clicks QA
|
| 391 |
+
QA_addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
|
| 392 |
+
|
| 393 |
+
QA_run_button.click(qa_summarise,
|
| 394 |
+
inputs=[selected_queries, qa_llm_model, text_field, data], ## XXX fix text_field
|
| 395 |
+
outputs=[hsummary, qa_df])
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
# Event listener for single text classification
|
| 399 |
+
text_to_classify.submit(
|
| 400 |
+
single_classification,
|
| 401 |
+
inputs=[text_to_classify, model_sing_classify, threshold_sing_classify],
|
| 402 |
+
outputs=[classification, classification_score])
|
| 403 |
+
|
| 404 |
demo.launch()
|