Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -94,7 +94,7 @@ def load_and_classify_csv_dataframe(file, text_field, event_model, threshold):
|
|
| 94 |
return result_df, result_df, gr.update(choices=sorted(filters+extra_filters),
|
| 95 |
value='All',
|
| 96 |
label="Filter data by label",
|
| 97 |
-
visible=True)
|
| 98 |
|
| 99 |
|
| 100 |
def calculate_accuracy(flood_selections, fire_selections, none_selections, num_posts, text_field, data_df):
|
|
@@ -172,7 +172,6 @@ with gr.Blocks(fill_width=True) as demo:
|
|
| 172 |
|
| 173 |
T_data_ss_state = gr.State(value=pd.DataFrame())
|
| 174 |
|
| 175 |
-
|
| 176 |
with gr.Tab("Event Type Classification"):
|
| 177 |
gr.Markdown(
|
| 178 |
"""
|
|
@@ -213,75 +212,6 @@ with gr.Blocks(fill_width=True) as demo:
|
|
| 213 |
|
| 214 |
|
| 215 |
|
| 216 |
-
with gr.Tab("Event Type Classification Eval"):
|
| 217 |
-
gr.Markdown(
|
| 218 |
-
"""
|
| 219 |
-
# T4.5 Relevance Classifier Demo
|
| 220 |
-
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
| 221 |
-
Usage:\n
|
| 222 |
-
- Upload .tsv or .csv data file (must contain a text column with social media posts).\n
|
| 223 |
-
- Next, type the name of the text column.\n
|
| 224 |
-
- Then, choose a BERT classifier model from the drop down.\n
|
| 225 |
-
- Finally, click the 'start prediction' buttton.\n
|
| 226 |
-
Evaluation:\n
|
| 227 |
-
- To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
|
| 228 |
-
- Then, click on the 'Calculate Accuracy' button.\n
|
| 229 |
-
- Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
|
| 230 |
-
""")
|
| 231 |
-
with gr.Row():
|
| 232 |
-
with gr.Column(scale=4):
|
| 233 |
-
file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
| 234 |
-
|
| 235 |
-
with gr.Column(scale=6):
|
| 236 |
-
text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
| 237 |
-
event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
| 238 |
-
ETCE_predict_button = gr.Button("Start Prediction")
|
| 239 |
-
with gr.Accordion("Prediction threshold", open=False):
|
| 240 |
-
threshold = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold", show_label=False,
|
| 241 |
-
info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
| 242 |
-
higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
| 243 |
-
|
| 244 |
-
with gr.Row():
|
| 245 |
-
with gr.Column():
|
| 246 |
-
gr.Markdown("""### Flood-related""")
|
| 247 |
-
flood_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 248 |
-
|
| 249 |
-
with gr.Column():
|
| 250 |
-
gr.Markdown("""### Fire-related""")
|
| 251 |
-
fire_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 252 |
-
|
| 253 |
-
with gr.Column():
|
| 254 |
-
gr.Markdown("""### None""")
|
| 255 |
-
none_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 256 |
-
|
| 257 |
-
with gr.Row():
|
| 258 |
-
with gr.Column(scale=5):
|
| 259 |
-
gr.Markdown(r"""
|
| 260 |
-
Accuracy: is the model's ability to make correct predicitons.
|
| 261 |
-
It is the fraction of correct prediction out of the total predictions.
|
| 262 |
-
|
| 263 |
-
$$
|
| 264 |
-
\text{Accuracy} = \frac{\text{Correct predictions}}{\text{All predictions}} * 100
|
| 265 |
-
$$
|
| 266 |
-
|
| 267 |
-
Model Confidence: is the mean probabilty of each case
|
| 268 |
-
belonging to their assigned classes. A value of 1 is best.
|
| 269 |
-
""", latex_delimiters=[{ "left": "$$", "right": "$$", "display": True }])
|
| 270 |
-
gr.Markdown("\n\n\n")
|
| 271 |
-
model_confidence = gr.Number(label="Model Confidence")
|
| 272 |
-
|
| 273 |
-
with gr.Column(scale=5):
|
| 274 |
-
correct = gr.Number(label="Number of correct classifications")
|
| 275 |
-
incorrect = gr.Number(label="Number of incorrect classifications")
|
| 276 |
-
accuracy = gr.Number(label="Model Accuracy (%)")
|
| 277 |
-
|
| 278 |
-
ETCE_accuracy_button = gr.Button("Calculate Accuracy")
|
| 279 |
-
download_csv = gr.DownloadButton(visible=False)
|
| 280 |
-
num_posts = gr.Number(visible=False)
|
| 281 |
-
data = gr.DataFrame(visible=False)
|
| 282 |
-
data_eval = gr.DataFrame(visible=False)
|
| 283 |
-
|
| 284 |
-
|
| 285 |
qa_tab = gr.Tab("Question Answering")
|
| 286 |
with qa_tab:
|
| 287 |
gr.Markdown(
|
|
@@ -313,7 +243,7 @@ with gr.Blocks(fill_width=True) as demo:
|
|
| 313 |
QA_run_button = gr.Button("Start QA", interactive=False)
|
| 314 |
hsummary = gr.Textbox(label="Summary")
|
| 315 |
|
| 316 |
-
qa_df = gr.DataFrame()
|
| 317 |
|
| 318 |
|
| 319 |
with gr.Tab("Single Text Classification"):
|
|
@@ -346,8 +276,75 @@ with gr.Blocks(fill_width=True) as demo:
|
|
| 346 |
classification_score = gr.Number(label="Classification Score")
|
| 347 |
|
| 348 |
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
|
| 353 |
|
|
@@ -360,6 +357,7 @@ with gr.Blocks(fill_width=True) as demo:
|
|
| 360 |
}
|
| 361 |
|
| 362 |
"""
|
|
|
|
| 363 |
# Test event listeners
|
| 364 |
T_predict_button.click(
|
| 365 |
load_and_classify_csv_dataframe,
|
|
@@ -382,22 +380,22 @@ with gr.Blocks(fill_width=True) as demo:
|
|
| 382 |
|
| 383 |
|
| 384 |
# Button clicks ETC Eval
|
| 385 |
-
ETCE_predict_button.click(
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
|
| 390 |
-
ETCE_accuracy_button.click(
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
|
| 395 |
|
| 396 |
# Button clicks QA
|
| 397 |
QA_addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
|
| 398 |
|
| 399 |
QA_run_button.click(qa_summarise,
|
| 400 |
-
inputs=[selected_queries, qa_llm_model,
|
| 401 |
outputs=[hsummary, qa_df])
|
| 402 |
|
| 403 |
|
|
|
|
| 94 |
return result_df, result_df, gr.update(choices=sorted(filters+extra_filters),
|
| 95 |
value='All',
|
| 96 |
label="Filter data by label",
|
| 97 |
+
visible=True), gr.update(interactive=True), gr.update(interactive=True)
|
| 98 |
|
| 99 |
|
| 100 |
def calculate_accuracy(flood_selections, fire_selections, none_selections, num_posts, text_field, data_df):
|
|
|
|
| 172 |
|
| 173 |
T_data_ss_state = gr.State(value=pd.DataFrame())
|
| 174 |
|
|
|
|
| 175 |
with gr.Tab("Event Type Classification"):
|
| 176 |
gr.Markdown(
|
| 177 |
"""
|
|
|
|
| 212 |
|
| 213 |
|
| 214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
qa_tab = gr.Tab("Question Answering")
|
| 216 |
with qa_tab:
|
| 217 |
gr.Markdown(
|
|
|
|
| 243 |
QA_run_button = gr.Button("Start QA", interactive=False)
|
| 244 |
hsummary = gr.Textbox(label="Summary")
|
| 245 |
|
| 246 |
+
qa_df = gr.DataFrame(visible=False)
|
| 247 |
|
| 248 |
|
| 249 |
with gr.Tab("Single Text Classification"):
|
|
|
|
| 276 |
classification_score = gr.Number(label="Classification Score")
|
| 277 |
|
| 278 |
|
| 279 |
+
# with gr.Tab("Event Type Classification Eval"):
|
| 280 |
+
# gr.Markdown(
|
| 281 |
+
# """
|
| 282 |
+
# # T4.5 Relevance Classifier Demo
|
| 283 |
+
# This is a demo created to explore floods and wildfire classification in social media posts.\n
|
| 284 |
+
# Usage:\n
|
| 285 |
+
# - Upload .tsv or .csv data file (must contain a text column with social media posts).\n
|
| 286 |
+
# - Next, type the name of the text column.\n
|
| 287 |
+
# - Then, choose a BERT classifier model from the drop down.\n
|
| 288 |
+
# - Finally, click the 'start prediction' buttton.\n
|
| 289 |
+
# Evaluation:\n
|
| 290 |
+
# - To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
|
| 291 |
+
# - Then, click on the 'Calculate Accuracy' button.\n
|
| 292 |
+
# - Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
|
| 293 |
+
# """)
|
| 294 |
+
# with gr.Row():
|
| 295 |
+
# with gr.Column(scale=4):
|
| 296 |
+
# file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
| 297 |
+
|
| 298 |
+
# with gr.Column(scale=6):
|
| 299 |
+
# text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
| 300 |
+
# event_model = gr.Dropdown(event_models, value=event_models[0], label="Select classification model")
|
| 301 |
+
# ETCE_predict_button = gr.Button("Start Prediction")
|
| 302 |
+
# with gr.Accordion("Prediction threshold", open=False):
|
| 303 |
+
# threshold = gr.Slider(0, 1, value=0, step=0.01, label="Prediction threshold", show_label=False,
|
| 304 |
+
# info="This value sets a threshold by which texts classified flood or fire are accepted, \
|
| 305 |
+
# higher values makes the classifier stricter (CAUTION: A value of 1 will set all predictions as none)", interactive=True)
|
| 306 |
+
|
| 307 |
+
# with gr.Row():
|
| 308 |
+
# with gr.Column():
|
| 309 |
+
# gr.Markdown("""### Flood-related""")
|
| 310 |
+
# flood_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 311 |
|
| 312 |
+
# with gr.Column():
|
| 313 |
+
# gr.Markdown("""### Fire-related""")
|
| 314 |
+
# fire_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 315 |
+
|
| 316 |
+
# with gr.Column():
|
| 317 |
+
# gr.Markdown("""### None""")
|
| 318 |
+
# none_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
|
| 319 |
+
|
| 320 |
+
# with gr.Row():
|
| 321 |
+
# with gr.Column(scale=5):
|
| 322 |
+
# gr.Markdown(r"""
|
| 323 |
+
# Accuracy: is the model's ability to make correct predicitons.
|
| 324 |
+
# It is the fraction of correct prediction out of the total predictions.
|
| 325 |
+
|
| 326 |
+
# $$
|
| 327 |
+
# \text{Accuracy} = \frac{\text{Correct predictions}}{\text{All predictions}} * 100
|
| 328 |
+
# $$
|
| 329 |
+
|
| 330 |
+
# Model Confidence: is the mean probabilty of each case
|
| 331 |
+
# belonging to their assigned classes. A value of 1 is best.
|
| 332 |
+
# """, latex_delimiters=[{ "left": "$$", "right": "$$", "display": True }])
|
| 333 |
+
# gr.Markdown("\n\n\n")
|
| 334 |
+
# model_confidence = gr.Number(label="Model Confidence")
|
| 335 |
+
|
| 336 |
+
# with gr.Column(scale=5):
|
| 337 |
+
# correct = gr.Number(label="Number of correct classifications")
|
| 338 |
+
# incorrect = gr.Number(label="Number of incorrect classifications")
|
| 339 |
+
# accuracy = gr.Number(label="Model Accuracy (%)")
|
| 340 |
+
|
| 341 |
+
# ETCE_accuracy_button = gr.Button("Calculate Accuracy")
|
| 342 |
+
# download_csv = gr.DownloadButton(visible=False)
|
| 343 |
+
# num_posts = gr.Number(visible=False)
|
| 344 |
+
# data = gr.DataFrame(visible=False)
|
| 345 |
+
# data_eval = gr.DataFrame(visible=False)
|
| 346 |
+
|
| 347 |
+
|
| 348 |
|
| 349 |
|
| 350 |
|
|
|
|
| 357 |
}
|
| 358 |
|
| 359 |
"""
|
| 360 |
+
|
| 361 |
# Test event listeners
|
| 362 |
T_predict_button.click(
|
| 363 |
load_and_classify_csv_dataframe,
|
|
|
|
| 380 |
|
| 381 |
|
| 382 |
# Button clicks ETC Eval
|
| 383 |
+
# ETCE_predict_button.click(
|
| 384 |
+
# load_and_classify_csv,
|
| 385 |
+
# inputs=[file_input, text_field, event_model, threshold],
|
| 386 |
+
# outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence, num_posts, data, QA_addqry_button, QA_run_button])
|
| 387 |
|
| 388 |
+
# ETCE_accuracy_button.click(
|
| 389 |
+
# calculate_accuracy,
|
| 390 |
+
# inputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, num_posts, text_field, data],
|
| 391 |
+
# outputs=[incorrect, correct, accuracy, data_eval, download_csv])
|
| 392 |
|
| 393 |
|
| 394 |
# Button clicks QA
|
| 395 |
QA_addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
|
| 396 |
|
| 397 |
QA_run_button.click(qa_summarise,
|
| 398 |
+
inputs=[selected_queries, qa_llm_model, T_text_field, T_data_ss_state],
|
| 399 |
outputs=[hsummary, qa_df])
|
| 400 |
|
| 401 |
|