Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def load_and_analyze_csv(file, text_field):
|
| 7 |
+
df = pd.read_csv(file.name)
|
| 8 |
+
|
| 9 |
+
if text_field not in df.columns:
|
| 10 |
+
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
|
| 11 |
+
|
| 12 |
+
fire_related = gr.CheckboxGroup(choices=df['text'].to_list()[:5])
|
| 13 |
+
flood_related = gr.CheckboxGroup(choices=df['text'].to_list()[:7])
|
| 14 |
+
not_related = gr.CheckboxGroup(choices=df['text'].to_list())
|
| 15 |
+
time.sleep(5)
|
| 16 |
+
return fire_related, flood_related, not_related
|
| 17 |
+
|
| 18 |
+
def analyze_selected_texts(selections):
|
| 19 |
+
selected_texts = selections
|
| 20 |
+
|
| 21 |
+
analysis_results = [f"Word Count: {len(text.split())}" for text in selected_texts]
|
| 22 |
+
|
| 23 |
+
result_df = pd.DataFrame({"Selected Text": selected_texts, "Analysis": analysis_results})
|
| 24 |
+
return result_df
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
with gr.Blocks() as demo:
|
| 28 |
+
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"]
|
| 29 |
+
|
| 30 |
+
with gr.Tab("Event Type Classification"):
|
| 31 |
+
with gr.Row(equal_height=True):
|
| 32 |
+
with gr.Column(scale=4):
|
| 33 |
+
file_input = gr.File(label="Upload CSV File")
|
| 34 |
+
|
| 35 |
+
with gr.Column(scale=6):
|
| 36 |
+
text_field = gr.Textbox(label="Text field name", value="text")
|
| 37 |
+
event_model = gr.Dropdown(event_models, label="Select classification model")
|
| 38 |
+
predict_button = gr.Button("Start Prediction")
|
| 39 |
+
|
| 40 |
+
with gr.Row(): # XXX confirm this is not a problem later --equal_height=True
|
| 41 |
+
with gr.Column():
|
| 42 |
+
gr.Markdown("""### Flood-related""")
|
| 43 |
+
fire_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications")
|
| 44 |
+
|
| 45 |
+
with gr.Column():
|
| 46 |
+
gr.Markdown("""### Fire-related""")
|
| 47 |
+
flood_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications")
|
| 48 |
+
|
| 49 |
+
with gr.Column():
|
| 50 |
+
gr.Markdown("""### None""")
|
| 51 |
+
none_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications")
|
| 52 |
+
|
| 53 |
+
predict_button.click(load_and_analyze_csv, inputs=[file_input, text_field], outputs=[fire_checkbox_output, flood_checkbox_output, none_checkbox_output])
|
| 54 |
+
|
| 55 |
+
with gr.Tab("Question Answering"):
|
| 56 |
+
# XXX Add some button disabling here, if the classification process is not completed first XXX
|
| 57 |
+
|
| 58 |
+
analysis_button = gr.Button("Analyze Selected Texts")
|
| 59 |
+
analysis_output = gr.DataFrame(headers=["Selected Text", "Analysis"])
|
| 60 |
+
analysis_button.click(analyze_selected_texts, inputs=fire_checkbox_output, outputs=analysis_output)
|
| 61 |
+
|
| 62 |
+
demo.launch()
|