Spaces:
Sleeping
Sleeping
Update qa_summary.py
Browse files- qa_summary.py +60 -0
qa_summary.py
CHANGED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def generate_answer(llm_name, texts, query, mode='validate'):
|
| 5 |
+
|
| 6 |
+
if llm_name == 'solar':
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0", use_fast=True)
|
| 8 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
+
"Upstage/SOLAR-10.7B-Instruct-v1.0",
|
| 10 |
+
device_map="auto", #device_map="cuda"
|
| 11 |
+
#torch_dtype=torch.float16,)
|
| 12 |
+
|
| 13 |
+
elif llm_name == 'mistral':
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_fast=True)
|
| 15 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 16 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 17 |
+
device_map="auto", #device_map="cuda"
|
| 18 |
+
#torch_dtype=torch.float16,)
|
| 19 |
+
|
| 20 |
+
elif llm_name == 'phi3mini':
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", use_fast=True)
|
| 22 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
| 24 |
+
device_map="auto",
|
| 25 |
+
torch_dtype="auto",
|
| 26 |
+
trust_remote_code=True,)
|
| 27 |
+
|
| 28 |
+
template_texts =""
|
| 29 |
+
for i, text in enumerate(texts):
|
| 30 |
+
template_texts += f'{i+1}. {text} \n'
|
| 31 |
+
|
| 32 |
+
if mode == 'validate':
|
| 33 |
+
conversation = [ {'role': 'user', 'content': f'Given the following query: "{query}"? \nIs the following document relevant to answer this query?\n{template_texts} \nResponse: Yes / No'} ]
|
| 34 |
+
elif mode == 'summarize':
|
| 35 |
+
conversation = [ {'role': 'user', 'content': f'For the following query and documents, try to answer the given query based on the documents.\nQuery: {query} \nDocuments: {template_texts}.'} ]
|
| 36 |
+
elif mode == 'h_summarize':
|
| 37 |
+
conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
|
| 38 |
+
|
| 39 |
+
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
| 40 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(llm_model.device)
|
| 41 |
+
outputs = llm_model.generate(**inputs, use_cache=True, max_length=4096,do_sample=True,temperature=0.7,top_p=0.95,top_k=10,repetition_penalty=1.1)
|
| 42 |
+
output_text = tokenizer.decode(outputs[0])
|
| 43 |
+
if llm_name == "solar":
|
| 44 |
+
assistant_respond = output_text.split("Assistant:")[1]
|
| 45 |
+
elif llm_name == "phi3mini":
|
| 46 |
+
assistant_respond = output_text.split("<|assistant|>")[1]
|
| 47 |
+
assistant_respond = assistant_respond[:-7]
|
| 48 |
+
else:
|
| 49 |
+
assistant_respond = output_text.split("[/INST]")[1]
|
| 50 |
+
if mode == 'validate':
|
| 51 |
+
if 'Yes' in assistant_respond:
|
| 52 |
+
return True
|
| 53 |
+
else:
|
| 54 |
+
return False
|
| 55 |
+
elif mode == 'summarize':
|
| 56 |
+
return assistant_respond
|
| 57 |
+
elif mode == 'h_summarize':
|
| 58 |
+
return assistant_respond
|
| 59 |
+
|
| 60 |
+
|